Invited review article

Gut microbiome, metabolome, and allergic diseases

So-ichiro Hirata, Jun Kunisawa

Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan
Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka, Japan
Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan

Article history:
Received 10 May 2017
Received in revised form 30 May 2017
Accepted 2 June 2017
Available online 8 July 2017

Keywords:
Amino acid
Lipids
Microbiome
Short-chain fatty acid
Vitamin

Abbreviations:
GPR, G protein-coupled receptor; IL, interleukin; iNKT, invariant natural killer T; LCFA, long-chain fatty acid; MAIT, mucosa-associated invariant T; MHC, major histocompatibility complex; PPAR, peroxisome proliferator-activated receptor; SCFA, short-chain fatty acid; Th2, T helper type 2; Treg, regulatory T

Abstract

The number of patients with allergic and inflammatory disorders has been increasing during the past several decades. Accumulating evidence has refined our understanding of the relationship between allergic diseases and the gut microbiome. In addition, the gut microbiome is now known to produce both useful and harmful metabolites from dietary materials. These metabolites and bacterial components help to regulate host immune responses and potentially affect the development of allergic diseases. Here, we describe recent findings regarding the immunologic crosstalk between commensal bacteria and dietary components in the regulation of host immunity and the influence of this relationship on the development of allergic diseases.

Introduction

The mammalian intestine is home to trillions of commensal bacteria, representing more than 1000 species. Due to difficulties in the culture of many commensal bacteria, culture-based analysis fails to provide complete and accurate information regarding the composition of the intestinal microbiota. However, recent advances in high-throughput DNA sequencing of the bacterial 16S ribosomal RNA amplicon enable the direct identification of commensal bacteria without culturing, revealing that altered composition and, consequently, decreased diversity (known as dysbiosis) of the intestinal microflora are linked to the development of inflammatory and allergic diseases. For example, patients with food allergies in the United States have low species diversity, reduced Clostridiales, and increased Bacteroidales in the gut commensal bacteria. In another study, an elevated Enterobacteriaceae:Bacteroidaceae ratio in early infancy was associated with subsequent food sensitization.

In addition, some intestinal bacteria supply beneficial metabolites derived from the host's diet, which contribute to the development and regulation of the host immune system through their effects on differentiation, proliferation, migration, and effector functions. In this review, we describe recent findings regarding how commensal bacteria and their metabolites regulate host immune responses and their possible involvement in the development and control of allergic diseases.
Long-chain fatty acids and allergic diseases

Long-chain fatty acids (LCFAs) are major nutrients, not only acting as energy sources but also in the regulation of immune responses. In general, LCFAs are derived from dietary components and metabolized into lipid metabolites after absorption into the body. Among LCFAs, the \(\omega 3 \) and \(\omega 6 \) FAs are essential FAs that mammals cannot produce. It has long been known that \(\omega 3 \) FAs have anti-allergic and anti-inflammatory properties. Indeed, we previously reported that allergic diarrhea was ameliorated through the consumption of \(\omega 3 \)-enriched linseed oil. An additional analysis using lipidomics technology allowed us to identify 17,18-epoxy-eicosatetraenoic acid as an anti-allergic lipid metabolite derived from eicosapentaenoic acid.

Although 17,18-epoxy-eicosatetraenoic acid is likely generated in the colon through the action of cytochrome P450, several lines of evidence indicate that commensal bacteria participate in LCFAs metabolism. Indeed, germ-free animals exhibit alterations in lipid metabolites, some of which are derived from \(\omega 3 \)-FAs. For example, colonic levels of the \(\omega 3 \) FA metabolites \(\omega 3 \)-hydroxy-docosahexaenoic acid, \(\omega 3 \)-hydroxy-docosahexaenoic acid, resolvin D1, and protectin D1 are greater in germ-free mice than conventional mice. In addition, resolvin D1 down-regulates the gene expression of interleukin (IL) 1 during pathogenic infection, and IL-1\(\beta \) exacerbates allergic disorders such as atop eczema, asthma, and contact dermatitis. Together, these findings imply that microbe-dependent suppression of resolvin D1 production may be associated with allergic inflammation.

We also found that \(\omega 6 \) FA-derived lipid metabolites are generated by commensal bacteria, especially lactic acid bacteria. For example, Lactobacillus plantarum generates conjugated linoleic acids, o xo FAs, and hydroxy FAs from \(\omega 6 \) FAs (Table 1). Consistent with the fact that Lactobacillus spp. are predominant in the proximal small intestine, \(\omega 6 \) hydroxy FAs such as \(\omega 6 \)-hydroxy-cis-12-octadecenoic acid and \(\omega 6 \)-hydroxy-cis-9-octadecenoic acid are abundant in the small intestine of specific pathogen-free mice but are decreased in the small intestine of germ-free mice. A subsequent study revealed that the administration of synthetic \(\omega 6 \)-hydroxy-cis-12-octadecenoic acid ameliorated experimental colitis by enhancing tight junctions via G protein-coupled receptor (GPR) 40 on epithelial cells (Table 1, Fig. 1). Because intestinal epithelial barrier function is important for control of food allergy, it is plausible that Lactobacillus-derived 10-hydroxy-cis-12-octadecenoic acid might protect against the development of food allergy by maintaining intestinal epithelial barrier function.

Regarding the relationship among lipids, the gut microbiome, and allergy in humans, a recent cohort study demonstrated that variations in the composition of the gut microbiota during the neonatal stage were differentially related to the relative risk of developing atopy and asthma in childhood. 165 rRNA sequencing analysis revealed that neonates with decreased relative abundance of various bacterial species (e.g., Bifidobacterium, Akkermansia, and Faecalibacterium) and increased relative abundance of particular fungi (Candida and Rhodotorula) were at high risk for the development of allergy (Table 1). Intriguingly, whereas anti-inflammatory lipid metabolites including docosapentaenoate and dihomo- \(\gamma \)-linolenate were increased in the low-risk group, pro-inflammatory metabolites such as 12,13-dihydroxy-9Z-octadecenoic acid, stigma- and sitosterols, and 8-hydroxyoctanate were enriched in high-risk subjects. These metabolites increased the induction of IL-4-producing T helper type 2 (Th2) cells and reduced regulatory T (Treg) cell counts, thus creating an environment highly conducive to allergic disease (Fig. 1).

Lipid-mediated anti-allergic properties involve several mechanisms, including signal transduction, transcription, and gene expression via receptors (e.g., GPR40, GPR120, and the peroxisome proliferator-activated receptor [PPAR] family). GPR40 and GPR120 are well known as LCPA receptors. As mentioned earlier, 10-hydroxy-cis-12-octadecenoic acid is recognized by GPR40 and consequently suppresses TNFR2 gene expression and nuclear factor \(\kappa \)B (NF-\(\kappa \)B) via the MEK-ERK pathway. In addition, docosahexaenoic acid, an \(\omega 3 \) FA, ameliorates inflammation by binding GPR40

Table 1 Immunomodulable metabolites derived from commensal microorganisms.

<table>
<thead>
<tr>
<th>Category</th>
<th>Metabolite</th>
<th>Related microorganism</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCFA</td>
<td>10-hydroxy-cis-12-octadecenoic acid</td>
<td>Lactobacillus plantarum</td>
<td>GPR40 ligand</td>
<td>15,18</td>
</tr>
<tr>
<td></td>
<td>12,13-dihydroxy-9Z-octadecenoic acid</td>
<td>Candida and Rhodotorula (possibly)</td>
<td>Unknown</td>
<td>20</td>
</tr>
<tr>
<td>Glycolipid</td>
<td>Conjugated linoleic acids</td>
<td>Bacteroides thetaiotaomicron</td>
<td>PPAR(\gamma) ligand</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Glycosphingolipids</td>
<td>Enterococcus fecalis</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Glycosphingolipids</td>
<td>VSL#3 (probiotic mixture)</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Glycoadiacylglycerols</td>
<td>Sphingomonas spp.</td>
<td>CD1d-dependent antigen to iNKT cells</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Diacylglycerol-containing glycolipids</td>
<td>Sphingomonas spp., Ehrlichia, and Borella burgdorferi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetra-mannosylated form of phosphatidylinositol</td>
<td>Streptococcus pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesteryl-(\alpha)-glucoside</td>
<td>Mycobacterium bovis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetate</td>
<td>Helicobacter pylori</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCFA</td>
<td>Acetate</td>
<td>Bifidobacterium spp.</td>
<td>Acetylation of Foxp3 promoter likely through HDAC9 inhibition</td>
<td>50,57</td>
</tr>
<tr>
<td>Butyrate</td>
<td>Clastreum clusters XIVa and Iva and Bacteroides thetaiotaomicron</td>
<td></td>
<td>Histone H3 acetylation in the Foxp3 locus</td>
<td>49,55</td>
</tr>
<tr>
<td>Propionate</td>
<td>Bacteroides, Phascolactobacterium succinatutens, Veillonella spp., and Clastreum clusters XIVa and Iva</td>
<td></td>
<td>GPR41 and GPR43 ligand</td>
<td>48,51,56</td>
</tr>
<tr>
<td>Vitamin</td>
<td>Reduced 6-hydroxymethyl-8-d-ribitylumazine</td>
<td>Salmonella typhimurium</td>
<td>MR1-dependent antigen to MAIT cells</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>7-hydroxy-6-methyl-8-d-ribitylumazine</td>
<td>Unknown</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Amino acid</td>
<td>D-tryptophan</td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and GPR120 on macrophages, thus preventing the activation of the NLRP3 inflammasome.22 Given that activation of the NLRP3 inflammasome on macrophages contributes to asthma exacerbation,23 it may offer a promising approach for the regulation of other allergic diseases.

LCFAs have been proposed to modulate immune reactions via PPAR family receptors, which generally are negative regulators for allergic diseases.24,25 As an example of the crosstalk between commensal bacteria and the PPAR family, \textit{Bacteroides thetaiotaomicron} promoted PPAR-\gamma/C0-dependent export of NF-\kappaB from the nucleus and consequently decreased NF-\kappaB-dependent IL-8 production (Table 1, Fig. 1),26 thus perhaps curbing the IL-8-mediated infiltration of granulocytes in bronchial allergy.27,28 Moreover, treatment with \textit{Enterococcus fecalis} led to the activation of PPAR-\gamma1 in human intestinal epithelial cells and increased the production of IL-10 (Table 1, Fig. 1),29 potentially suppressing allergic inflammation. Another study showed that probiotic bacteria in the intestine produce conjugated linoleic acids that target PPAR-\gamma in macrophages to suppress the inflammatory response (Table 1).30

In addition, lipids directly act as antigens to activate immune cells, especially invariant natural killer T (iNKT) cells. iNKT cells recognize glycolipid antigens presented on the MHC class I-related molecule CD1d.31 Glycolipid antigens include \textit{a}-galactosylceramide (derived from a sample of marine sponge) and microbial glycolipids (e.g., glycosphingolipids from \textit{Sphingomonas} spp. bacteria; glycosphingolipids from \textit{Streptococcus pneumoniae}; a tetra-mannosylated form of phosphatidylglycerol from \textit{Mycobacterium bovis}; and cholesteryl-\alpha-glucoside from \textit{Helicobacter pylori}) (Table 1).32 Compared with conventional mice, germ-free mice have fewer iNKT cells in the spleen, liver, and thymus, suggesting that commensal bacteria are involved in the induction of iNKT cells by producing their antigen.33 Some studies show that iNKT cells act as key pathogenic T cells and exacerbate allergic airway diseases by promoting the production of IL-4 and IL-13 (Th2 cytokines),34 whereas others suggest that iNKT cells suppress IgE production and induce the production of IL-10 from B cells and Treg cells (Table 1).38 Together, these findings indicate that the type of lipid or timing of lipid exposure may determine the immunologic phenotype of iNKT cells, which have the potential to control allergic inflammation.

\section*{Immune regulation by short-chain fatty acids}

Short-chain fatty acids (SCFAs) are 1–6 carbons in length. The major SCFAs in the gut include acetate, propionate, and butyrate.39,40 Because SCFAs are produced through the fermentation of polysaccharides, such as cellulose,41–43 germ-free mice exhibit remarkably decreased amounts of SCFAs and increased amounts of indigestible oligosaccharide.10,44–47 In addition, the intake of dietary fiber was shown to change the composition of the intestinal flora, in particular by decreasing Firmicutes and simultaneously increasing Bacteroidetes at the phylum level and by increasing Bifidobacteriaceae at the family level. Organisms belonging to
Bacteroidetes and Bifidobacteriaceae preferentially metabolized the fiber, thereby increasing the concentration of SCFAs. Therefore, commensal bacteria metabolize fiber to generate SCFAs, and fiber reciprocally affects the composition of commensal bacteria in the gut.

Accumulating evidence indicates that SCFAs have several anti-allergic properties. Regarding the underlying mechanisms, SCFAs (particularly propionate) educate dendritic cells to achieve high phagocytic capacity and an ability not to promote the effector function of Th2 cells, which is dependent on GPR41 but not GPR43 (Table 1, Fig. 1). In addition, SCFAs enhance the induction and function of Treg cells (Fig. 1). Among SCFAs, butyrate induced the differentiation of Treg cells in vitro and in vivo with concurrent enhancement of histone H3 acetylation in the Foxp3 locus (Table 1). Acetate increased the acetylation of the Foxp3 promoter also, likely through HDAC9 inhibition (Table 1). Propionate increases the number of Treg cells mediated through GPR43 on the cells (Table 1). As mentioned above, intestinal epithelial barrier is also important for prevention of the food allergy. Microbial butyrate and acetate enhance the epithelial barrier function via induction of physiological hypoxia in the intestinal epithelial cells (Fig. 1). Therefore, SCFAs have beneficial effects such as Treg cells induction and enhancement of the barrier function for allergic diseases.

Among commensal bacteria in the colon, Clostridia produce SCFAs and indeed induce colonic Treg cells, leading to the suppression of inflammatory and allergic responses (Table 1, Fig. 1). Clostridia, especially Clostridium clusters XIVa and IVa, are known to produce butyrate from pyruvate via butyryl CoA:acetate CoA transferase and from acetate (Table 1, Fig. 1). Propionate is primarily produced by Bacteroidetes and some Firmicutes (e.g., Phascolarctobacterium succinutanus, Veillonella spp.), mainly via the succinate metabolic pathway (Table 1, Fig. 1). Acetate is generated by many genera of intestinal organisms, including Bifidobacterium spp (Table 1, Fig. 1). Collectively, commensal bacteria have the ability to produce different SCFAs via fermentation in the gut and thus to exert diverse anti-allergic properties.

Vitamins

There are 13 essential vitamins for humans: the hydrophobic vitamins—A, D, E, and K—and the hydrophilic vitamins—the B family (B1, B2, B3, B5, B6, B7, B9, and B12) and C. Like mammals, bacteria utilize vitamins for their biologic functions. However, unlike mammals, some bacteria have the capacity to synthesize essential vitamins, especially B-family members and K, and thus are an important additional source of vitamins. Many groups (including ours) have reported immunologic functions of vitamins. For example, Treg cells express high levels of folate (vitamin B9) receptor 4, and vitamin B9 is essential for their maintenance (Fig. 1). Indeed, a deficiency of vitamin B9 leads to the development of intestinal inflammation. Because the levels of vitamin B9 produced differ among commensal bacteria, the amount of dietary vitamin B9 necessary to maintain Treg cells may be totally dependent on this amount.

In addition to their functions as essential nutrients, some vitamins act as ligands for immune cells, and their presentation as ligands is mediated by monomorphic MHC class I-related protein (also known as MR1). Intriguingly, MR1 presents metabolites generated in the microbial riboflavin (vitamin B2) biosynthetic pathways to mucosa-associated invariant T (MAIT) cells (Table 1), a population of T cells that produces IL-17 and IFN-γ. Of note, MR1 also binds to a microbial vitamin B9 metabolite, 6-formylpterin, but it does not activate MAIT cells (Table 1, Fig. 1). In addition to their role in the immunosurveillance system, MAIT cells are likely involved in the allergic and inflammatory diseases. Therefore, it is plausible that the balance between commensal bacteria and dietary conditions determines the production of microbial vitamin metabolites and subsequent regulation of immune responses and allergic conditions.

Bacterial amino acids

Humans must obtain 20 amino acids as essential nutrients, some of which (alanine, aspartate, cysteine, glutamate, glutamic acid, glycine, and tryptophan) are metabolized by commensal bacteria. In addition, all amino acids except glycine have two isoforms, the L- and D-amino acids, which are enantiomers. In general, L-amino acids are incorporated into protein in mammalian cells, whereas some bacteria can produce and use ε-amino acids as bacterial cell wall components. Indeed, a recent study indicated that cecal quantities of some ε-amino acids (including ε-alanine, ε-asparagine, ε-glutamic acid, and ε-proline) are greater in specific pathogen-free mice compared with germ-free mice. Several lines of evidence have indicated the potential influence of amino acids on the development, homeostasis, and function of immune cells. For instance, melatonin is a metabolite of 5-hydroxytryptophan that can prevent the production of inflammatory cytokines. Dietary glutamine has the ability to reduce the expression of P-selectin glycoprotein ligand-1, leukocyte function-associated antigen-1, and C-C chemokine receptor type 9 on T cells in the blood and mesenteric lymph node of mice. The intake of dietary histidine or glycine led to the inhibition of inflammatory cytokine production from macrophages in vitro or colonic tissue of rodent colitis models. Glutamine reportedly is a nutrient necessary to induce IL-10-producing intraepithelial lymphocytes in the small intestine; glutamate also has a potential to promote immune tolerance in gut-associated lymphoid tissue. Although few data are available regarding how D-type (or bacterial) amino acids regulate allergic inflammation, dietary intake of ε-tryptophan from probiotic bacteria (such as Lactobacillus rhamnosus GG, Lactobacillus casei W56) reportedly concomitantly induced increased Treg cell counts and decreased Th2 responses in the gut and lung, consequently cooperatively ameliorating allergic airway inflammation and hyperresponsiveness (Table 1, Fig. 1). Therefore, D-type amino acids derived from commensal bacteria in the gut might offer a means to regulate host allergic reactions.

Conclusion

Commensal bacteria in the gut produce several beneficial metabolites that regulate allergic responses; this effect is mediated at least in part by the induction of Treg cells, suppression of the Th2-type phenotype, up-regulation of IL-10 expression, and maintenance of the gut barrier function. In contrast, intestinal commensal bacteria also are involved in the production of pro-inflammatory metabolites. The balance between these functions might be determined by both external factors (e.g., diet) and internal factors (e.g., host genetics). Therefore, future research should focus on clarifying the versatile and complex system established in the gut, where a triangular network among diet, commensal bacteria, and host exists.

Acknowledgements

This work was supported by grants from the Japan Agency for Medical Research and Development (16817372, 16768433, 16727634 and 17933231); the Ministry of Health, Labour and Welfare, Japan (15654110); the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food
Industry; the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant numbers 26293111, 16H01373, 23229004, 17918005 and 15K18950); the Astellas Foundation for Research on Metabolic Disorders; the Terumo Foundation for Life Sciences and Arts; the Suzuki Memorial Foundation; and the Nipponham Foundation for the Future of Food.

Conflict of interest
The authors have no conflict of interest to declare.

References