Raman Spectroscopic Study on Alkaline Metal Ion Solvation in 1-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)amide Ionic Liquid

Yasuhiro UMEBASHI,*† Taishi YAMAGUCHI,* Shuhei FUKUDA,* Takushi MITSUGI,* Munetaka TAKEUCHI,* Kenta FUJII,** and Shin-ichi ISHIGURO*

*Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashi, Fukuoka 812-8581, Japan
**Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan

The Raman spectra for 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [BMI][Tf2N] containing alkaline metal salts of Tf2N−, MTFSA (M = Li, Na, K and Cs), were recorded in the frequency range of 200 - 1800 cm−1, with varying salt concentrations at 298 K. With Li+ and Na+ ions, at the frequency range of 730 - 760 cm−1, new Raman bands ascribable to the anion bound to the ions appeared at higher frequency relative to that found in the neat ionic liquid. On the other hand, with K+ and Cs+ ions, single Raman bands were solely observed. According to the difference Raman spectra for the ionic liquids containing K+ and Cs+, evaluated by subtracting Raman spectra for the neat ionic liquid, it turned out that two-state approximation, i.e., bulk Tf2N− and Tf2N− bound to K+ and Cs+ ions, could hold, as Li+ and Na+ ions. By careful analyses of Raman band intensity arising from bulk Tf2N− as a function of the salt concentration, the solvation numbers for the respective ions were successfully evaluated to be 1.95 for Li+, 2.88 for Na+, 3.2 for K+ and 3.9 for Cs+, respectively. By taking into account that Tf2N− acts as a bidentate ligand, the atomic coordination numbers are proposed to be 4, 6, 6 and 8 for Li+, Na+, K+ and Cs+, respectively. Raman shifts for the Tf2N− bound to the metal ions relative to that of the bulk Tf2N− were plotted against the ionic radii for the solvated alkaline metal ions estimated via Shannon’s ionic radii, to yield a straight line with a slope of almost unity, suggesting that the electrostatic interaction predominantly operates in the ion-ion interaction between the alkaline metal ions and Tf2N−, as expected. Moreover, the Raman spectra in the frequency range of 370 - 450 cm−1 strongly depend on the alkaline metal ions, indicating that cis Tf2N− is favored in the first solvation sphere of the Li+ ion of a relatively small ionic radius, and that such a preferred conformational isomerism of Tf2N− diminishes with an increase of the ionic radii of the central metal ions.

(Received June 24, 2008; Accepted July 18, 2008; Published October 10, 2008)

Introduction

Room temperature ionic liquids have recently attracted much attention as environmentally favorable solvents owing to their practically negligible vapor pressure. The non-volatility, and thus non-flammability of ionic liquids stimulate researchers to develop high-energy density electrochemical devices of high safety,7 such as fuel cells,7 lithium ion secondary batteries,3 electric double-layer capacitors3 and dye-sensitized solar cells.5 On the other hand, one of the promised applications of ionic liquids is alternative solvents instead of conventional volatile organic solvents for separation and extraction. Some useful reviews on separation and extraction using ionic liquids have been published.8 The efforts to develop new ionic liquids for the purpose is still continued.2 Though numerous numbers of ionic liquid applications, particularly those using metal ions, as mentioned above, have been published, studies from the viewpoint of fundamental science seem to be scarce in ionic liquid chemistry. Nishi and Kakiuchi et al. successfully applied the ion transfer voltammetry across the electrochemically polarized micro-liquid-liquid interface between water and ionic liquids, and found that the transfer of alkali metal ions (Li+, Na+, K+, Rb+, Cs+) across the interface between an aqueous solution and a highly hydrophobic ionic liquid, N-octadecylisooctoxininium-tetrakis[3,5-bis(trifluoromethyl)phenyl]borate ([C18H4][TFPB]), can be facilitated by dibenzo-18-crown-6 (DB18C6).6 They evaluated the formation constants for a complex formation between alkaline metal ions and DB18C6 in the [C18H4][TFPB] ionic liquid, and found that the ionic liquid provides a unique solvation environment for the complexations of DB18C6 with alkaline metal ions.

As is well established, solvation plays a key role in chemical reactions in solutions particularly ion-pair formation, complex formation and electron-transfer reactions. Therefore, it should be indispensable to reveal solvation in ionic liquids from thermodynamic and structural viewpoints. Hardacre reviewed EXAFS (extended X-ray absorption fine structure) studies on ionic liquids containing metal ions, including those of conventional room temperature molten salts.9 On the other hand, structural aspects on alkylimidazolium-based salts containing fluoro-anions have recently been reviewed, while focusing on the solid state.10 Jensen et al. reported structures of Sr2+ and Eu3+ complexes in ionic liquids by EXAFS and HES (high-energy X-ray scattering) techniques.11 However, little has

†To whom correspondence should be addressed.
E-mail: yumescc@mbox.nc.kyushu-u.ac.jp
been reported on the “naked” solvation structure of metal ions in ionic liquids, \(^\text{12}\) though those in aqueous and non-aqueous solvents were accumulated.\(^\text{13}\) EXAFS is a useful technique to determine the structural parameters for heavy metal ions, while it is not so easy to apply to prove ions of small atomic number. With regard to alkaline metal ions, a few Raman spectroscopic studies on lithium ion solvation have been published in connection with lithium ion secondary batteries using ionic liquids composed of bis(trifluoromethanesulfonyl)amide.\(^\text{14,16}\) However, the lithium ion solvation number in ionic liquids was not clear, because the Raman spectra for ionic liquids containing lithium ion, and even neat ionic liquids, themselves, are quite complicated, \(i.e.,\) according to our previous studies, the components 1-ethyl-3-methylimidazolium (EMI\(^+\)), \(^\text{17}\) N-butyl-N-methylpyrrolidinium (P\(_3\)M)\(^+\) and bis(trifluoromethanesulfonyl)amide (TFSA\(^-\))\(^\text{18}\) ions have conformational isomerism, and two or three predominant conformers of the respective ions exist in equilibrium in the corresponding ionic liquids.

Recently, we reported on the lithium ion solvation structure in [EMI][TFSA] and [P\(_3\)M][TFSA] ionic liquids by means of Raman spectroscopy and DFT calculations,\(^\text{19,20}\) and elucidated that the lithium ion is coordinated by two TFSA\(^-\) anions as a bidentate ligand, and that the anion in the first coordination sphere of the lithium ion prefers the cis conformation (two CF\(_3\) groups locate at the cis position with respect to the S-N-S plane), though the trans one is a slightly favorable isomer in neat ionic liquids. In order to understand the ion-ion interactions for metal ion solvation in ionic liquids in detail, it is needed to reveal the ion radii dependence of the ion solvation. Thus, we extended our study on the solvation structure of metal ions in ionic liquids to other alkaline metal ions (Na\(^+\), K\(^+\) and Cs\(^+\)). It should be noted that the ionic radii for the solvated alkaline metal ions can be reasonably specified by knowing the atomic coordination numbers in ionic liquids.

In this paper, the Raman spectra of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [BMI][TFSA] ionic liquid containing alkaline metal salts MTFSA (\(\text{M} = \text{Li}, \text{Na}, \text{K}, \text{and Cs}\)) were recorded with varying the metal ion concentration. The integral intensity of the Raman band for the bulk TFSA\(^-\) anion in the respective metal ion solvation solution was quantitatively analyzed as a function of the metal ion concentration. The solvation numbers for the alkaline metal ions in the ionic liquid were successfully evaluated. The ion-ion interactions between TFSA\(^-\) and the alkaline metal ions were discussed in terms of the dependence of the \(\Delta V\) values (\(\Delta V \equiv V_{\text{M}} - V_{\text{Na}}\), \(V_{\text{M}}\) and \(V_{\text{Na}}\) stand for the peak positions for the Raman bands arising from TFSA\(^-\) bound to the alkaline metal ion and the bulk one, respectively) on the ionic radii of the solvated metal ions. Moreover, we found that the anion conformations in the first solvation spheres of the metal ions depend on the ionic radii of the central alkaline metal ions. The conformations of the anion bound to the alkaline metal ions are also discussed with the aid of MD simulations for similar systems.

Experimental

Materials

LiTFSA and KTFSA salts (Morita Chemical Industries) dried in vacuo at 423 K for 48 h were used without further purification. NaTFSA and CsTFSA salts were prepared by treating the corresponding carbonates with an aqueous solution of HTFSA (Morita Chemical Industries), and recrystallized 3 times from water, then dried in vacuo at 423 K for 48 h. The solvent [BMI][TFSA] was obtained by treating [BMI][Br] with an HTFSA aqueous solution, followed by repeated recrystallization from water and drying in vacuo at 348 K. The residual Br was checked to be negligible by the AgNO\(_3\) test. [BMI][Br] was synthesized according to the literature from N-methylimidazole (Nippon Synthetic Chemical Industry) and bromobutane (Tokyo Chemical Industry), which were distilled in advance. The water content was checked by a Karl Fischer method to be below 100 ppm for all samples examined. Sample solutions were prepared by dissolving a given amount of the alkaline metal salts in the ionic liquid [BMI][TFSA] at ambient temperature. All samples used in this study were treated and stored in a high-performance glove box (Miwa), in which the water and oxygen contents were kept below 1 ppm.

Raman spectroscopy measurements

Raman spectra were obtained using an FT-Raman spectrometer (Perkin Elmer GX-R) equipped with an Nd:YAG laser operating at 1064 nm. The laser power was kept at 800 mW throughout measurements. The optical resolution was 2.0 cm\(^{-1}\) and spectral data were accumulated 1024 times to obtain data of a sufficiently high signal-to-noise ratio. The sample liquid in a quartz cell was stirred and thermostated at a given temperature within ±0.3 K. No appreciable damage to the sample was detected after irradiation. The measured Raman intensities were normalized using the 826 cm\(^{-1}\) band ascribable to BMI\(^++\), and the concentrations of ions in sample liquids were corrected for the density. The densities of sample solutions were measured using a density-meter (Kyoto Electronics DA 300).

Raman spectra were deconvoluted to extract single Raman bands. A single Raman band is assumed to be represented as a pseudo-Voigt function, \(f(s) = \gamma f_1(s) + (1 - \gamma)f_2(s)\), where \(f_1(s)\) and \(f_2(s)\) stand for the Lorentzian and Gaussian components, respectively, and the parameter \(\gamma (0 < \gamma < 1)\) is the fraction of the Lorentzian component. To avoid any uncertainty in obtaining the \(\gamma\) value of the peaks, the value was fixed to that obtained at the highest molarity alkaline metal ions. The intensity \(I\) of a single Raman band is evaluated according to \(I = \gamma I_1 + (1 - \gamma)I_0\), where \(I_1\) and \(I_0\) denote integrated intensities of the Lorentzian and Gaussian components, respectively. A nonlinear least-square curve-fitting program, based on the Marquardt-Levenberg algorithm,\(^\text{23,24}\) was developed in our laboratory and used throughout the analyses.

MD simulations

Lennard-Jones (LJ) and Coulomb terms were taken into account for intermolecular interactions. For the neat ionic liquid, the force field constructed by Lopes and Padua et al.\(^\text{25}\) was employed, which means that all simulations reported in this work were based on the OPLS-AA\(^\text{26}\) convention. With regard to Li\(^+\), we used two kinds of intermolecular potential parameters, \(i.e.,\) one was that proposed by Soetens et al.\(^\text{27}\) for the molecular simulations of carbonates solutions containing Li\(^+\), and the other was CFF force fields.\(^\text{28}\) In our simulations, Gear’s predictor-corrector algorithm\(^\text{29}\) was employed for the integrals of the equation of motion. The system temperature and pressure were controlled by Nose’s\(^\text{30}\) and Parrinello-Rahman’s\(^\text{31}\) methods. The Coulombic long-range interactions were treated by Ewald’s method with a cutoff distance of 11 Å.

As the first step in the simulations, NTP ensembles at 2000 K and 10000 atm were employed, with 38 Li\(^+\), 218 EMIM\(^+\) and 256 TFSA\(^-\) ions for the mole fraction of an \(x = 0.15\) solution (and also 82 Li\(^+\), 174 EMIM\(^+\) and 256 TFSA\(^-\) for \(x = 0.32\)) set at low density inside a cubic box with periodic boundary conditions. These ensembles were simulated until near-equilibrium conditions were achieved, a process that took a few hundred
picoseconds. Then, the ensembles were changed to NTV, and the system volumes were fixed to the average values obtained from the previous NTP ensemble runs. These second-step equilibrations were typically calculated during 500 ps. The obtained trajectories were analyzed to check if the ions were fully mixed, and the final configurations were employed as the initial sets for the final NTP ensemble simulations at 1 atm and 298 K. The final simulations typically consisted of a 1-ns equilibration period, followed by 1 ns production runs. The trajectories in the last 500 ps of the production runs were then analyzed.

The density values as ensemble averages were 1.614(6) and 1.663(6) g cm⁻³ for x = 0.15 and 0.30, respectively. The experimentally determined values were 1.55981(5) g cm⁻³ and 1.61235(3) g cm⁻³ at 298.15 K for the respective ionic liquid solution. The predicted densities agreed with the measured ones within ca. 3% accuracy in this work.

All simulations were carried out using Fujitsu Materials Explorer 4.0 on a Fujitsu PRIMEQUEST 580 at the Computing and Communications Center, Kyushu University.

Results and Discussion

Solvent structure in BMI⁺·TFSA⁻

Raman spectra for [BMI][TFSA] ionic liquid solutions containing alkaline metal ions at the frequency range of 730 – 760 cm⁻¹ are shown in Fig. 1, and the dependence on the alkaline metal ion concentration is also shown in Fig. 2. In this frequency region, it is well established that the Raman band assigned to the CF₂ bending vibration δ(CF₂) coupled with the S-N stretching one ν(SNS) of TFSA⁻ appears at 743 cm⁻¹.²² The Raman band is accompanied by that of a higher frequency ascribable to the anion bound to the Li⁺ ion, dissolving LiTFSA salt.¹⁶⁻¹⁸ The frequency range, the Raman spectra for the ionic liquid containing Li⁺ were similar to those previously reported for [EMI][TFSA], as expected.²⁰ As can be seen in Fig. 2, with the Na⁺ ion, a new Raman band ascribable to the anion bound to Na⁺ ion is clearly found at the higher frequency side relative to that of the neat ionic liquid, like the Li⁺ ion. Such a higher frequency shift has been found in Raman spectra for a polymer electrolyte system containing NaTFSA salt.²¹ On the other hand, with K⁺ and Cs⁺ ions of relatively large ionic radii, single Raman bands solely appeared with peak positions of slightly higher frequency. It should be noted that, strictly speaking, even the Raman band observed at 743 cm⁻¹ for neat [BMI][TFSA] is also affected by the ion-ion interaction with the BMI⁺ cation in ionic liquids. The higher frequency shifts found in Raman bands for ionic liquids containing K⁺ and Cs⁺ ions may be due to the superposition of those for TFSA⁻ ions bound to the metal ions and bulk one. Thus, Raman difference spectra for ionic liquids containing K⁺ and Cs⁺ ions were evaluated by subtracting the Raman spectrum for the neat ionic liquid (Fig. 3). As clearly shown in Fig. 3, asymmetric Raman difference spectra, like differential ones, with the obvious iso-scattering points of ca. 744 and 743 cm⁻¹ for K⁺ and Cs⁺ solution, respectively, were obtained, indicating that the Raman bands ascribable to the anions bound to K⁺ and Cs⁺ ions are seriously overlapped with that arising from the bulk anion, and observed as single Raman bands, because the higher frequency shifts are quite small. This is plausible by taking into account the small charge density of singly charged K⁺ and Cs⁺ ions of relatively large ionic radii. This will be discussed in a later section more quantitatively.

As can be seen in Fig. 2, with Li⁺ and Na⁺ ions, the Raman bands from the bulk TFSA⁻ evidently decreased in intensity with increasing the metal ion concentration. On the other hand, the minimum of the negative value found in the Raman difference spectra for ionic liquids including K⁺ and Cs⁺ ions (Fig. 3) decreased in intensity (the negative peak height becomes lower more negatively) with practically unchanged peak positions, which indicates that the intensity of the Raman bands for the bulk TFSA⁻ in the ionic liquid solutions decreased as the...
increase of the concentration of K⁺ and Cs⁺ ions, like Li⁺ and Na⁺ ions. As previously reported, a quantitative analysis of the decrease in the integral intensity of the Raman band for bulk TFSÅ can yield the solvation numbers for the dissolved metal ion, when a two-state approximation, one in bulk and the other bound to the metal ion, can be reasonably held. As discussed above, we assumed that the two-state approximation could hold adequately, even in the case of K⁺ and Cs⁺ ions. Thus, we attempted to extract single Raman bands from the observed Raman spectra to yield the integral intensity of the Raman band for bulk TFSÅ. During the course of analysis, we employed some transcendental criteria, i.e., the peak position and the molar Raman scattering coefficient for bulk TFSÅ in the respective solution should be independent from the dissolving metal ions, and the band shape should remain practically unchanged. Typical results for Raman band deconvolution of the nonlinear least squares are shown in Fig. 4. As can be seen from this figure, the Raman band intensity for the bulk TFSÅ in the ionic liquid solutions containing almost the same concentration of ca. 0.5 mol dm⁻³ alkaline metal ions obviously decreases in the order of Li⁺ > Na⁺ > K⁺ > Cs⁺, implying that the solvation numbers for the alkaline metal ions increases with the ionic radii. Thus, a more quantitative analysis was carried out while varying the alkaline metal salts concentration.

The integral intensity Iₙ of an extracted single Raman band of the bulk TFSÅ anion can be represented as Iₙ = IₛCₛ, where Iₛ and cₛ stand for the molar Raman scattering coefficient and the molarity of the TFSÅ anion in the bulk, respectively. cₛ is given as cₛ = cₛ = cₛ = cₛ - nCₛ, where cₛ, cₛ, Cₛ and n denote the molarities of the total and bound TFSÅ anions, and the molarity and the solvation number of the alkaline metal ions, respectively. Taking into consideration the above two relationships, we obtained the following relationship: Iₛ/Cₛ = Iₛ(R - n), where R = cₛ/Cₛ. A plot of Iₛ/Cₛ against R thus yields a straight line, and the n value is obtained as n = -βR from a slope of β = Iₛ and an intercept of β = -Iₛ. Iₛ/Cₛ vs. R plots for the respective alkaline metal ions are shown in Fig. 5. As can be seen from this figure, plots for all of the alkaline metal ions examined here fall on straight lines, which suggests that the solvation numbers for the alkaline metal ions hardly depend on the concentration examined here. In addition, almost the same slope for the respective alkaline metal ion (the slope yields the Raman scattering coefficient for the bulk TFSÅ), indicating that Raman band deconvolution was made adequately throughout this work, and thus the obtained solvation numbers could be reliable. The evaluated values for the solvation numbers for the alkaline metal ions are listed in Table 1, accompanied by the Raman spectroscopic parameters. The values of the solvation numbers are 1.95 for lithium ion, 2.88 for sodium ion, 3.2 for potassium ion and 3.9 for cesium ion, respectively. Taking into consideration the experimental errors, the numbers of solvated TFSÅ anions could be 2 for Li⁺, 3 for Na⁺ and K⁺, and 4 for Cs⁺, respectively. Moreover, it is plausible that, in the liquid state, the TFSÅ anion predominantly acts as a bidentate ligand with one oxygen atom in each SO₂ group. Consequently, it is plausible that the atomic coordination numbers for Li⁺, Na⁺, K⁺ and Cs⁺ are 4, 6, 6 and 8, respectively, in the ionic liquid.

It is worth comparing with the coordination numbers or the solvation structures of the alkaline metal ions in conventional molecular liquids. With regard to lithium ion, the hydration structure revealed by various techniques was recently reviewed. The hydration numbers of Li⁺ ion distribute from 4 to 6, depending on the counter anion and the concentrations of the salts. However, we recently demonstrated that lithium ion predominantly exists as a 4-coordinated structure in propylene carbonate solutions by neutron diffraction with the ⁶Li isotope substitution technique. According to previously reported neutron scattering studies, 4-coordinated structures of Li⁺ ion would be favorable species in aqueous solutions and in non-aqueous solutions. Compared with the solvation structures in conventional molecular solvent solutions, the similar 4-coordinated structure of Li⁺ ion in ionic liquids seems to be reasonable. With the Na⁺ ion, the hydration numbers seem to depend on the salt concentration, i.e., 6 and 4 in dilute and concentrated solution, respectively. On the other hand, experimental investigations on the Na⁺ ion solvation structure in non-aqueous solutions are scarce. With K⁺ and Cs⁺, recent experimental and theoretical studies on the hydration structures can be found in the literature, while, as far as we are aware, there is no published experimental work on the solvation structures in non-aqueous solvents. We believe that the solvation structures of Na⁺, K⁺ and Cs⁺ ions in non-aqueous solvents are not clear at

![Figure 4](image1.png) - Typical extracted single Raman bands in the frequency range of 720–770 cm⁻¹ for [BMI][TFSÅ] ionic liquid solutions for ca. 0.5 mol dm⁻³ TFSÅ (M = Li, Na, K and Cs), measured at 298 K.

![Figure 5](image2.png) - Plots of Iₛ/Cₛ vs. R. Solvation numbers of alkaline metal ions in ionic liquid were evaluated from the slope and the intercept for linear least squares (see text).

Table 1 Solvation numbers n in [BMI][TFSÅ] ionic liquids at 298 K. Shannon’s ionic radii r(pm) for alkaline metal ions and Raman spectroscopic parameters such as Δν/cm⁻¹, Raman scattering coefficients Iₛ and Jₛ, and the ratio Jₛ/J₁.

<table>
<thead>
<tr>
<th>Ion</th>
<th>n</th>
<th>r</th>
<th>Δν</th>
<th>Jₛ</th>
<th>J₅</th>
<th>Jₛ/J₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li⁺</td>
<td>1.95(3)</td>
<td>59</td>
<td>5.9</td>
<td>1.930(6)</td>
<td>1.3</td>
<td>0.68(6)</td>
</tr>
<tr>
<td>Na⁺</td>
<td>2.88(2)</td>
<td>102</td>
<td>3.4</td>
<td>1.952(2)</td>
<td>1.6</td>
<td>0.86(2)</td>
</tr>
<tr>
<td>K⁺</td>
<td>3.2(1)</td>
<td>138</td>
<td>3.1</td>
<td>1.89(1)</td>
<td>1.4</td>
<td>0.82(9)</td>
</tr>
<tr>
<td>Cs⁺</td>
<td>3.9(2)</td>
<td>174</td>
<td>1.6</td>
<td>1.92(3)</td>
<td>1.4</td>
<td>0.77(6)</td>
</tr>
</tbody>
</table>
the present stage.

To the best of our knowledge, no neutron/X-ray scattering experiments for the alkaline metal ions solution in the ionic liquid has been reported until the present, while a few theoretical studies were published. Borodin et al. investigated the lithium ion solvation structure and transport property in N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide by MD simulations based on a many-body polarizable model. According to their simulations, the Li$^+$ ion is coordinated by 4 oxygen atoms, and 65% of the Li$^+$ ions exist as the oligomer, in which two Li$^+$ ions are bridged by three TFS$^-$ ions in a bidentate manner, i.e., two oxygen atoms in a SO$_2$ group coordinate to a Li$^+$ ion. Such a solvation structure agrees with the LiTFS$^-$ crystal structure, while differing from that of Li$_2$[EMI][TFSI].

On the other hand, according to MD simulations based on the effective pair potentials, three TFS$^-$ ions solvate to a Li$^+$ ion, which is surrounded by five oxygen atoms, i.e., two of bidentate TFS$^-$ and one mono-dentate. In addition, the Li$^+$ ion solvation structure depends on its concentration, i.e., with an increase of the Li$^+$ ion concentration, the average number of solvated TFS$^-$ increases, whilst the average number of donating oxygen atoms decreases. Sieffert and Wipff have so far studied alkaline metal ions of Na$^+$, K$^+$, Rb$^+$ and Cs$^+$ by quantum chemical calculations and MD simulations in connection with solvent extraction and/or a liquid-liquid interface. They evaluated the interaction energy for the aggregates [Na$^+(TFSI)_{n}$] ($n = 1 - 3$) in the gas phase by quantum chemical calculations, and found that the interaction energy shows a minimum at $n = 2$. In addition, in their simulations, Na$^+$ is surrounded by 4.0 TFS$^-$ via O atoms of 5.7, corresponding to two bidentate and two mono-dentate TFS$^-$ ions. Cs$^+$ is coordinated by 5 TFS$^-$ anions via 6.2 oxygen atoms on the average, one anion being bidentate and the others being mono-dentate. Thus, it would be necessary to make more experimental and theoretical efforts to draw more accurate pictures of alkaline metal ion solvation at a molecular level.

Ion-ion interaction between alkaline metal ion and TFS$^-$ ion

It is difficult to obtain information on the M-O bond length in solvated alkaline metal ions in solution by Raman spectroscopy directly. Nevertheless, though rough, information related to the bond length can be obtained from careful insight into the Raman spectra, if we take into account the well-accepted relationship between the coordination number and the bond length, i.e., the larger is the coordination number, the longer is the bond length. As indicated above, the solvation numbers (and thus the atomic coordination number) of the alkaline metal ions were evaluated, so that we could know the ionic radii of the solvated alkaline metal ions in ionic liquids. According to Shannon, the ionic radii are 59, 102, 138 and 174 pm for Li$^+$, Na$^+$, K$^+$ and Cs$^+$ of the 4-, 6-, 6- and 8-coordinated structure, respectively. By using these values, the relationship between $\Delta \nu$ and the ionic radii r of the solvated alkaline metal ions in the ionic liquid can be directly discussed. As the ionic radius of the alkaline metal ion is smaller, the higher frequency shift of the Raman band arising from the anions bound to the metal ions is larger. In other words, $\Delta \nu$ may be proportional to the nth power of the reciprocal ionic radii r. Thus, assuming that the relationship $\Delta \nu = (ar)^n$ can hold, where a represents parameters for the effective ionic radii of the metal ions, plots of $\log(\Delta \nu/\text{cm}^{-1})$ vs. $\log(r/\text{pm})$ yield the value of n as their slope. Furthermore, if the ion-ion interactions between the alkaline metal ions and the anion are electrostatic, it is expected that a value close to unity, because $\Delta \nu$ is proportional to the reciprocal r. As shown in Fig. 6, the plot falls on a straight line, suggesting that the TFS$^-$ ion coordinates to all alkaline metal ions examined here with practically the same binding mode, i.e., the bidentate one via one oxygen atom from each SO$_2$ group. Moreover, the value of the slope was evaluated to 0.9995. Therefore, it can be deduced that the ion-ion interactions between the alkaline metal ions and TFS$^-$ ions are essentially electrostatic, as expected.

In addition, we could discuss the ion-ion interaction between the alkaline metal ions and TFS$^-$ ions in terms of the Raman scattering coefficient. When the alkaline metal ions are coordinated by TFS$^-$ via oxygen atoms, the S-O bond, and probably also the C-F bond, should be polarized. The Raman scattering coefficient (scattering cross section) is proportional to the polarizability, and it is thus expected that the Raman scattering coefficient of the vibration mode including the motions of the S-O group would vary from the value for the bulk TFS$^-$, when coordinating to the alkaline metal ions. The relationship $I_0 = J_0c_0 = J_0nC_0$, also holds for the TFS$^-$ anion bound to the metal ion, and the molar Raman scattering coefficient I_0 is obtained from the J_0 vs. c_0 plot for the Raman bands arising from the bound anion. In fact, the J_0I_0 values for all of the alkaline metal ions examined here are smaller than unity, as shown in Table 1. Moreover, though large uncertainties exist, the smallest value was obtained for the Li$^+$ ion of the smallest ionic radius, as expected. However, $ab initio$ calculations of high levels sufficient to predict correct polarizability are necessary to discuss more quantitatively.

Conformation of TFS$^-$ in the first solvation sphere of alkaline metal ion

Figure 7 displays Raman spectra for ionic liquids containing alkaline metal ions of ca. 0.5 mol dm$^{-3}$ in the frequency range of 370 - 450 cm$^{-1}$, where a specific Raman band arising from cis TFS$^-$ (407 cm$^{-1}$) and those from trans TFS$^-$ (398 and 413 cm$^{-1}$) can be observed for the neat ionic liquid. As previously reported, when dissolving the Li$^+$ ion, the 407 cm$^{-1}$ band increases relative to the other two Raman bands from trans TFS$^-$ anion. The same can be observed in this work. Moreover, as can be seen in Fig. 7, similar enhanced Raman bands of 407 cm$^{-1}$ were evidently found in the Raman spectra for ionic liquids containing Na$^+$ and K$^+$ ions. On the other hand, such an increase of the 407 cm$^{-1}$ Raman band in intensity could not be observed for ionic liquid containing Cs$^+$ ions. This observation strongly suggests that the TFS$^-$ ion prefers the cis conformation, when it coordinates to alkaline metal ions of relatively small ionic radii. It should be noted that, in a neat ionic liquid, trans TFS$^-$ is a more favorable isomer relative to cis one, as shown both experimentally and theoretically.
The more stabilized cis TFSA$^-$ bound to metal ions relative to the trans one can also be found in crystals. According to our survey of the Cambridge Structure Database (CSD), 137 molecular structures of the TFSA$^-$ ion in crystals have been reported except the disordered ones, in which there are 81 and 56 anions bound to metal ions and non-metal cations, respectively. With the former, the C–S···S–C dihedral angle distribution corresponding to the anions bound to metal ions are rather different from those interacting with non-metal ions, as shown in Fig. 8.

This is also supported by quantum mechanical calculations. With regard to the Li$^+$ ion, the binding energy for [Li(cis TFSA)$_2$] is slightly larger than that for [Li(trans TFSA)$_2$] in the gas phase, as previously shown by our DFT calculations at the B3LYP/6-311+G(d,p) level of theory. On the other hand, according to DFT calculations at the B3LYP/6-31G(d) level of theory by Sieffert and Wipff, the binding energy for [Na(cis TFSA)$_2$] is smaller than that for [Na(trans TFSA)$_2$]. From these calculations, it can be deduced that cis TFSA$^-$ is stabilized relative to trans TFSA$^-$ when it coordinates to the Li$^+$ ion of small ionic radius, however, there is no such stabilization when it binds to the larger Na$^+$ ion.

In order to shed more light on the conformation of a TFSA$^-$ anion bound to alkaline metal ions, we performed MD simulations for [EMI][TFSA] ionic liquids containing the Li$^+$ ion. We adopted two different Li$^-$–O intermolecular potentials, as described above. The solvation structures of the Li$^+$ ion in our simulations will be described elsewhere, compared with other experimental evidences. Here, we focus only on the conformational isomerism of TFSA$^-$. For a discussion of the conformational isomerism of TFSA$^-$, it is useful to extract the dihedral angle distributions with respect to the pseudo-dihedral angle of the CS···SC ϕ in the anion, i.e., $\phi = 40^\circ$ and 170° represent cis- and trans TFSA$^-$, respectively. Figure 9 shows the CS···SC dihedral angle distributions derived from MD simulations for the respective force field with varying LiTFSA salt mole fractions in ionic liquid solutions. As can be seen, it is evidently found that trans TFSA$^-$ (peak at ca. 165$^\circ$) decreased, and oppositely the cis isomer (peak at ca. 30$^\circ$) increased with an increase of the LiTFSA mole fractions. Moreover, the conformational behavior of increasing LiTFSA mole fraction is independent from the two kinds of Li$^-$–O intermolecular potentials employed in this study. It should be noted that our simulations are classic ones and are based on the effective pair potentials of simple LJ and Coulombic interactions. The preferred conformation of cis isomer around the Li$^+$ ion of small ionic radius could be attributable to a larger dipole moment for the isomer relative to the other. In fact, similar preferred conformational isomerism in the first coordination sphere of the Li$^+$ ion was found in non-aqueous solvent solutions of dimethyl carbonate. Though we have no thermodynamic data for ion solvation in ionic liquids, such a preferred conformational isomerism may stabilize the central metal ion of small ionic radius relative to a larger one, as was previously shown by our systematic studies on the ion solvation in non-aqueous solvent solutions of amides.

Conclusion

Raman spectra for 1-butyl-3-methylimidazolium bis(trifluoromethanesulfon)amide containing alkaline metal salts of TFSA$^-$, MTFSA (M = Li, Na, K and Cs), were recorded in the frequency...
range of 200 – 1800 cm⁻¹, with varying salt concentration at 298 K. Quantitative analyses of Raman spectra with sufficient care yielded the solvation numbers to be 1.95 for Li⁺, 2.88 for Na⁺, 3.2 for K⁺ and 3.9 for Cs⁺, respectively. 4-, 6-, 6- and 8-coordinated structures for Li⁺, Na⁺ K⁺ and Cs⁺, respectively, in an ionic liquid were proposed based on the thus-evaluated solvation numbers and the bidentate binding mode of TFS⁻. Relative Raman shifts for the bound TFS⁻ to that for the bulk one show a good linear correlation with the reciprocal ionic radii for the solvated alkaline metal ions, according to Shannon’s ionic radii corresponding to the atomic coordination numbers proposed here.

From the Raman spectra in the frequency range of 370 – 450 cm⁻¹, the deformation of TFS⁻ in the first solvation sphere of the alkaline metal ions were discussed. Experimental evidence for the preferred conformational isomerism of cis TFS⁻ bound to Li⁺ and Na⁺ ions of the relatively small ionic radii was provided, and well supported by DFT calculations and MD simulations. The preferred conformational isomerization of cis TFS⁻ bound to small alkaline metal ions was ascribed to its larger dipole moment relative to trans TFS⁻.

Acknowledgements

This work has been financially supported by Grant-in-Aids for Scientific Research No. 19003963, 19350033, 19750062 and 20350037, and by a Grant-in-Aid for the Global COE Program, “Science for Future Molecular Systems” from the Ministry of Education, Culture, Sports, Science and Technology.

References

32. (a) I. Rey, P. Johansson, J. Lindgren, J. C. Lasségues, J.
(b) W. Huang, R. Frech, and R. A. Wheeler, J. Phys. Chem.,
1994, 98, 100. (c) A. Bakker, S. Gejji, J. Lindgren, K.
Hermansson, and M. M. Probst, polymer, 1995, 36, 4371.
33. A. Ferry, M. M. Doeff, and L. C. De Jonghe, J.
34. P. R. Smirnov and V. N. Trostin, Russ. J. Gen. Chem.,
2006, 76, 175.
35. Y. Kameda, Y. Umebayashi, M. Takeuchi, M. A. Wahab, S.
Fukuda, S. Ishiguro, M. Sasaki, Y. Amo, and T. Usuki, J.
Mochiduki, M. Imano, H. Naganuma, M. Sasaki, Y. Amo,
and T. Usuki, J. Mol. Liq., 2005, 119, 159. c) Y. Kameda,
M. Imano, M. Takeuchi, S. Suzuki, T. Usuki, and O.
37. a) T. Cartailler, W. Kunz, P. Turq, and M.-C. Bellissent-
384. (c) Y. Kameda, H. Ebata, T. Usuki, and O. Uemura,
Physica B, 1995, 212 – 214, 477. (d) Y. Kameda, N. Kodo,
2001, 74, 1009.
2007, 77, 844.
39. (a) Y. P. Pukhovskii, D. V. Sakharov, and L. P. Safonova, J.
Struct. Chem., 2002, 43, 284. (b) O. N. Kalugin, M. N.
Phys., 1999, 111, 7526. (d) A. K. Das and B. L. Tembe, J.
40. (a) A. K. Soper and K. Weckström, Biophys. Chem., 2006,
124, 180. (b) A. Tongraar and B. M. Rode, Phys. Chem.
Chem. Phys., 2004, 6, 411. (c) S. Ramos, G. W. Neilson,
A. C. Barnes, and P. Buchanan, J. Chem. Phys., 2005,
123, 214501.
43. K. Matsumoto, R. Hagiwara, and O. Tamada, Solid State
Sci., 2006, 8, 1103.
44. M. J. Monteiro, F. C. Bazito, L. J. A. Siqueira, M. C. C.
2102.
45. (a) N. Sieffert and G. Wipff, J. Phys. Chem. B, 2006, 110,
1106. (b) N. Sieffert and G. Wipff, J. Phys. Chem. B, 2006,
110, 19497. (b) N. Sieffert and G. Wipff, J. Phys. Chem. B,
2007, 111, 7253.
1969, 25, 925.
47. M. Deetlefs, C. Hardacre, M. Nieuwenhuysen, A. A. H.
2006, 110, 12055.
50. (a) Y. Umebayashi, K. Matsumoto, Y. Mune, Y. Zhang,
(b) Y. Umebayashi, Y. Mune, T. Tsukamoto, Y. Zhang, and S.
Ishiguro, J. Mol. Liq., 2005, 118, 45. (c) Y. Umebayashi, B.
Mroz, M. Asada, K. Fujii, K. Matsumoto, Y. Mune, M.
(d) Y. Zhang, N. Watanabe, Y. Miyawaki, Y. Mune, K. Fujii,
34, 1429. (e) Y. Zhang, N. Watanabe, Y. Umebayashi, and S.
Umebayashi, R. Kanzaki, D. Kobayashi, R. Matsuura, and