Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
Original Papers
Real-time in-situ Simultaneous Monitoring of Dissolved Oxygen and Materials Movements at a Vicinity of Micrometers from an Aquatic Plant by Combining Deflection of a Probe Beam and Fluorescence Quenching
Xing-Zheng WUXiaoyan WUTomomi INOUE
Author information
JOURNALS FREE ACCESS

2017 Volume 33 Issue 3 Pages 351-357

Details
Abstract

It is desirable to be able to monitor the intake or release of the components at different organs of aquatic plants in real time and in-situ. Here, we report a novel optical detection system that allows for real-time in-situ simultaneous monitoring of the dissolved oxygen and material movements at a vicinity of micrometers from the aquatic plant surface. A blue semiconductor diode-laser was used as the light source of both the probe beam and excitation light for fluorescence. The laser light reflected by a dichroic mirror was focused to a vicinity of the plant/water interface in a culture dish by an objective lens. The distance between the focused laser beam and the plant surface was adjusted by an X-Y-Z micro-stage. Deflection of the probe beam was detected by a position sensor, and fluorescence from the vicinity was monitored by a PMT. A commercial fluorescent DO sensor, which simultaneously monitored temperature, was immersed into the culture dish at about 1 cm away from the aquatic plants. A white-light LED was used to illuminate the aquatic plants in the dish in photosynthesis process. A Ru-complex (tris (2,2′-bipyridyl)ruthenium(II) chloride) was used as a fluorescent probe, and Egeria densa Planch. was used as a model aquatic plant. The DO-quenched fluorescence and material movement-induced deflection signals are compared at different distances from the aquatic plant surface. The results show that the optical detection system can monitor DO and the material movements at a vicinity of the aquatic plants not only much more sensitively, but also much more closely to real time than analytical methods that monitor concentration changes at a bulk solution.

  Fullsize Image
Information related to the author
© 2017 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top