Crystal Structure of Bis[acetatotetrabutyl-μ-hydroxy-μ3-oxoditin], [(AcO)Bu2Sn(OH)OSnBu2]2

José S. Casas, Alfonso Castiñeiras, Félix Condori, María D. Couce, José Sordo and José M. Varela

*Department of Inorganic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
**Department of Inorganic Chemistry, University of Vigo, 36200 Vigo, Galicia, Spain

The title compound comprises two slightly different types of [(AcO)Bu2Sn(OH)OSnBu2]2 units, which are hydrogen bonded via the μ-OH and AcO groups, giving a polymeric structure.

(Table 1 Crystal and experimental data)

Empirical formula: C36H80O8Sn4
Formula weight = 1115.76
Crystal system: monoclinic
Space group: C2/c (No.15)
Z = 8
a = 24.949(12)Å
b = 11.606(16)Å
(12) Å
(15) Å
b = 91.27(5)°
V = 10191.2(16)Å3
Dcalc = 1.454 Mg/m3
μ = 1.975 mm−1
F(000) = 4480
θ range for data collection: 1.16 to 27.45°
Reflections collected/unique: 11634/11634 [R(int) = 0.0476]
Absorption correction: ϕ-scan
Max. and min. transmission: 0.962 and 0.891
Goodness-of-fit on F2 = 1.109
Final R indices [I>2σ(I)] R1 = 0.0382, wR2 = 0.1603
Measurement: Enraf-Nonius MACH3
Programs: Nonius BV, CAD4-EXPRESS
Structure determination: direct methods (SHELXS97)
Refinement: full matrix least-squares on F2 (SHELXL97)
CCDC 252524 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

In the last two decades there has been considerable interest in the chemistry of organotin-oxo clusters.1 Tetraorganodistannoxanes are of current interest owing to their potential as homogeneous catalysts for a variety of organic reactions.2 The title compound (Fig. 1) was obtained by the reaction of pyridoxine hydrochloride with SnBu2Cl2 in ethanol-water, in an attempt to obtain a dibutyltin derivative of pyridoxine.3,4

Anal. Found: C, 38.7; H, 7.2. Calcd. for C9H20O2Sn: C, 38.8; H, 7.1. IR (cm−1) selected bands were: 3315(s), ν(OH); 1607(vs), νasym(COO−); 1387(vs), νsym(COO−); 668(m), νasym(Sn–C); 581(br), νsym(Sn–C), ν(Sn–O). 1H NMR (CDCl3; δ): 1.35 (m, 4, Hα); 1.63 (m, 4, Hβ); 1.35 (m, 4, Hγ); 0.90 (t, 3, Hδ), 0.87 (t, 3, Hδ); 1.91 (s, 3, CH3–COO–).

The crystal structure was solved by direct methods and refined by full-matrix least squares. Intensity data were collected at 293(2)K from a 0.40×0.32×0.16 mm crystal in an Enraf-Nonius MACH3 diffractometer. The C atoms of the Bu groups are disordered, and in the final refinement a displacement coefficient restricted to 0.08 was used for the three butyl C atoms that are not bound to the tin atom, which were then refined isotropically.

A summary of the crystal along with further details of the structure determination and refinement are given in Table 1. The selected bond lengths and bond angles are listed in Table 3. The asymmetric unit of the structure contains two crystallographically independent [(AcO)Bu2Sn(OH)OSnBu2]2 molecules, which are both centrosymmetric. Figure 2 shows an ORTEP drawing of one of them. In each, as in the very similar diethyltin derivative of perfluorophenylacetato,5 there are two different kinds of tin atoms. Both coordinate to two butyl C atoms, a bridging hydroxy O atom, a bridging oxo O and one other O atom, but for Sn(2) this third O atom belongs to the acetato group, while for Sn(1) it is the oxo O atom of the other half of the molecule. The environments of both Sn(1) and Sn(2) are distorted square pyramids with O(1) apical. The different

Table 1 Crystal and experimental data

Extinction correction: ϕ-scan
Max. and min. transmission: 0.962 and 0.891
Goodness-of-fit on F2 = 1.109
Final R indices [I>2σ(I)] R1 = 0.0382, wR2 = 0.1603
Measurement: Enraf-Nonius MACH3
Program system: Nonius BV, CAD4-EXPRESS
Structure determination: direct methods (SHELXS97)
Refinement: full matrix least-squares on F2 (SHELXL97)
CCDC 252524 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Fig. 1 Chemical diagram.

† To whom correspondence should be addressed.
E-mail: qjsordo@usc.es
environments of the tin atoms determine the differences in the bond angles, especially regarding the C–Sn–C angles [129.12(8)° at Sn(1), 140.1(3)° at Sn(2)]. The [(AcO)Bu2Sn(OH)OSnBu2]2 molecules are hydrogen-bonded via their OH and AcO groups, creating a polymeric structure [O(2) –H(2)···O(32)iii: 0.93, 1.95, 2.775(3)Å, 146.7°; O(4) –H(4)···O(12)i: 0.93, 1.92, 2.756(3)Å, 148.6°].

Acknowledgements
We thank the Xunta de Galicia, Spain, for support under projects PGIDIT03PXIC20306PN and PGIDIT03PXIC30103PN.

References