Emerging Myocardial SPECT with 201Tl Using Semiconductor Detectors: Clinical Application to Stress Myocardial Perfusion Scintigraphy

Mamoru Nanasato MD, PhD¹, Takanaga Niimi BSc², Mitsuo Sugimoto³ and Toyoaki Murohara MD, PhD³

Received: March 31, 2016/Revised manuscript received: June 1, 2016/Accepted: June 2, 2016
© The Japanese Society of Nuclear Cardiology 2016

Abstract

Novel single photon emission computed tomography (SPECT) scanners with solid-state semiconductor detectors using cadmium zinc-telluride (CZT) have been clinically applied. D-SPECT is a second scanner in Japan in which CZT detectors offer higher sensitivity and better spatial resolution than conventional Anger cameras. Myocardial counts are important to assure image quality that might be improved due to the favorable physical performance of the CZT detectors. Different physical properties between CZT detectors and Anger cameras alter the quality of myocardial SPECT images. The image quality of 201Tl-SPECT improved after introducing CZT detectors to achieve that of 99mTc. In addition, results from ECG-gated myocardial SPECT in clinical practice such as left ventricular volumes and ejection fraction were similar. These results could be applied to patients in the same way as those of conventional Anger cameras. However, reverse redistribution appears myocardial 201Tl-SPECT images of apparently normal persons. Uptake in apical areas is sometimes reduced. In conclusion, myocardial perfusion scintigraphy with 201Tl and CZT detectors has been clinically applied in Japan. Some 201Tl data from gamma cameras and CZT detectors are identical, but others differ. Further investigation is needed to optimize myocardial perfusion scintigraphy with 201Tl.

Keywords: Cadmium zinc telluride, Image quality, Ischemic heart disease

See page 122

Novel single photon emission computed tomography (SPECT) scanners with solid-state semiconductor detectors using cadmium zinc-telluride (CZT) have been applied in clinical practice. The D-SPECT scanner (Spectrum-Dynamics, Caesarea, Israel) is a second one that is available in Japan. It has nine square-hole tungsten collimators with vertically mounted CZT detector columns in 90° geometry. Each column comprises 1,024 (16×64), 5-mm-thick CZT elements (2.46 × 2.46 mm). Although the gamma camera appears fixed in front of a patient, data are acquired by synchronous rotation of these columns. The sensitivity is better and spatial resolution is higher for CZT detectors than conventional Anger cameras (1, 2). Differences in the physical properties between the two cause variations in myocardial SPECT features. However, CZT detectors decrease the duration of examinations, reduce radiation exposure (3-5) and improve image quality (6). These detectors have been introduced mainly in the USA and Europe. Although the applicability of CZT detectors to myocardial SPECT with 99mTc has been investigated (1, 4, 7-12), little is known about their application to myocardial SPECT with 201Tl. This article describes early experience myocardial D-SPECT with 201Tl.

doi: 10.17996/ANC.02.01.131

1) Mamoru Nanasato
Cardiovascular Center, Nagoya Daini Red Cross Hospital, 2-9 Myoken-cho, Showa, Nagoya, Aichi, Japan 466-8650
E-mail: nana@nagoya2.jrc.or.jp

2) Takanaga Niimi, Mitsuo Sugimoto
Department of Radiological Technology, Nagoya Daini Red Cross Hospital, Nagoya, Aichi, Japan

3) Toyoaki Murohara
Department of Cardiology, Nagoya University School of Medicine, Nagoya, Aichi, Japan.
Acquisition protocol using CZT detectors (D-SPECT) and Anger camera (A-SPECT)

Stress and rest images were acquired using A-SPECT followed by D-SPECT from patients at 5 to 10 minutes and four hours, respectively, after intravenously injecting patients with 74-111 MBq of 201Tl, or at 30 to 60 minutes after an intravenous injection of 300 to 600 MBq of 99mTc-tetrofosmin.

Image acquisition proceeded with the patients lying supine with both arms raised, and in a semi-reclining position with the left arm resting on top of the camera. A 30-second pre-scan before acquisition identified the location of the heart and set the angle limits of scanning for each detector, enabling scans of regions of interest. Stress and rest images were acquired over a period of six minutes. Images were gated at eight frames on 201Tl and sixteen on 99mTc per cardiac cycle using an R-wave trigger and an acceptance window at 20% of the mean R-wave interval. Attenuation and scatter correction were not applied.

The conventional Anger camera (Millennium, GE, Hino, Japan) comprising a sodium iodide scintillation crystal and an L-shaped, dual-detector equipped with low-energy, multi-purpose collimators, was rotated in a 90° arc in a circular orbit from the 45° right anterior oblique to the 45° left posterior oblique positions in 32 increments of 20 seconds on 201Tl or 30 seconds on 99mTc. The energy discriminator of the camera was set at a 70-keV photopeak for 201Tl with a 20% window and a 140 keV photopeak for 99mTc with a 20% window. Filtered back-projection proceeded through a Butterworth filter. ECG-gating, attenuation and scatter correction were applied in the same manner to all images.

Image analysis

Image quality was visually scored using a four-point scale comprising excellent, good, fair and poor. Uptake on non-gated SPECT images was visually graded in all myocardial SPECT segments by the consensus of two observers who were unaware of previous findings. Excellent images are without background and extracardiac activity and thus suitable for diagnosis. Good images are sufficient for evaluating a diagnosis. Fair images can be evaluated, but accumulation on the myocardium is inhomogeneous. Poor images are unsuitable for clinical diagnosis because of features such as low myocardial counts, high background activity and extracardiac accumulation (13). Scores of 0, 1, 2, 3 and 4 on 17 segments of the left ventricle (14) indicate findings as normal, mildly, moderately and severely reduced, and absent, respectively. Summed stress scores (SSS) and summed rest scores (SRS) are defined as the total defect score for each myocardial SPECT stress and rest image. The summed difference score (SDS) is defined as SSS minus SRS.

Comparison of image quality between D-SPECT with 201Tl and 99mTc and A-SPECT with 201Tl

The quality was compared between stress/rest images acquired using conventional myocardial 201Tl and 99mTc SPECT with CZT detectors in consecutive patients (n = 588 and n = 193, respectively) between May 2014 and January 2015. Another 609 patients were assessed by myocardial SPECT with 201Tl and an Anger camera between May 2013 and April 2014. The patients’ characteristics were similar among the three groups (Table 1). Fig. 1a shows representative findings of ischemia on myocardial SPECT images. The quality of the images acquired from myocardial D-SPECT with 201Tl and 99mTc was similar (Fig. 2a) and significantly improved; 28.2%, 64.1%, 6.4% and 1.4% were excellent, good and fair, respectively, compared with 15.4%, 54.7%, 27.0% and 2.9%, respectively, acquired by myocardial A-SPECT (Fig. 2b). The CZT detectors improved image quality with 201Tl through reducing the number of fair-quality images from 27.0% to 6.4%, during a shorter acquisition time (6 vs. 10 minutes 40 seconds). Another study found that myocardial D-SPECT with 201Tl improved image quality compared with A-SPECT (15). This is an inevitable consequence of the physical properties of CZT detectors.
Application for ECG-gated myocardial SPECT

The applicability of ECG-gated myocardial A-SPECT with 201Tl has been described (16-18). Data have been compared between images from supine patients acquired using CZT detectors and Anger cameras. One study found that quantitative ECG-gated myocardial D-SPECT with 99mTc correlated with data acquired A-SPECT (19), although the SPECT protocols differed between them. However, whether data acquired by ECG-gated myocardial D-SPECT and A-SPECT with 201Tl are comparable has remained unclear.

Twenty-two patients with known or suspected angina pectoris underwent essentially simultaneous 201Tl stress/rest ECG-gated myocardial D-SPECT and an A-SPECT because 201Tl myocardial D-SPECT images were also acquired at rest from supine patients. We used an optimized version of Quantitative Gated SPECT software (Cedars AutoQuant; Cedars-Sinai, Los Angeles, CA, USA) to calculate end diastolic volume (EDV), end systolic volume (ESV) and ejection fraction (EF) on ECG-gated myocardial SPECT rest images.

Patients (twelve male; mean age was 67.6 ± 12.1 years; body mass index, 24.2 ± 4.1) were administered with 98.4 ± 22.2 MBq 201Tl. The SSS, SRS and SDS were 1.6 ± 2.4, 1.7 ± 1.8 and -0.1 ± 1.9, respectively, on myocardial D-SPECT images and 2.0 ± 2.1, 1.6 ± 1.9, 0.4 ± 2.0, respectively, on those acquired using A-SPECT. Mean EDV, ESV, and EF were 70.1 ± 35.6 mL, 29.2 ± 26.5 mL and $63.0 \pm 12.3\%$, respectively, on myocardial D-SPECT images and 67.9 ± 33.6 mL, 27.8 ± 27.5 mL and $65.0 \pm 15.3\%$, respectively, on those acquired with A-SPECT (Fig. 3). Linear regression analyses of EDV, ESV and EF compared between ECG-gated myocardial D-SPECT and A-SPECT closely correlated (coefficients of $r=0.987$, 0.992 and 0.867, respectively; Fig. 3). Left ventricular function determined from D-SPECT and A-SPECT images were similar in clinical practice, although the images appeared quite different. The software algorithm is not fully open and this might explain the identical left ventricular volumes calculated by the software. The thresholds of ECG-gated myocardial D-SPECT and A-SPECT to determine the endocardial surface might be similar, as projection images from both are comparable. These results confirmed that quantitative analyses of data acquired by ECG-gated myocardial D-SPECT and A-SPECT are clinically applicable.

Normal images on the CZT detectors

Stress/rest myocardial D-SPECT with 201Tl sometimes
shows reduced uptake at the apex and/or apical inferior wall, resulting in emphasized ischemia in the apical area. Fig. 1b shows a representative image of normal perfusion acquired using myocardial SPECT. Data acquired from patients at low risk of ischemic heart disease according to their clinical background and normal findings on myocardial A-SPECT and D-SPECT with 201Tl were analysed. The patients were classified as being at low risk when ECG abnormalities, structural heart disease, diabetes mellitus requiring medication, chronic kidney disease (estimated glomerular filtration rate $<45 \text{ mL/min/1.73 m}^2$) and left ventricular asynergy (LVEF $>50\%$) were absent. Normal images were defined as having SSS <2 without redistribution. Seventy of 840 patients were confirmed as being free of ischemia according to their clinical background and the findings of myocardial perfusion D-SPECT between May 2014 and May 2015. Stress/rest myocardial D-SPECT with 201Tl revealed reverse redistribution in eight of the 70 patients and two had reverse redistribution in two consecutive areas, namely the apex and apical inferior wall. Six patients had reverse redistribution in the apical area. What reverse redistribution on stress/rest myocardial SPECT with 201Tl actually means has remained controversial. Previous studies have found that reverse redistribution indicates a viable myocardium in patients with myocardial infarction, especially after receiving reperfusion therapy (20-22). Most of the reverse redistribution on stress/rest myocardial 201Tl-SPECT in normal populations does not show as stenosis on coronary angiography or as a damaged myocardium.

The workstation for D-SPECT includes a normal file of North Americans who have been assessed by SPECT using 99mTc. However, physical properties differ between North Americans and Japanese (23-25). Previous studies have shown the relevance of a Japanese normal database to diagnose coronary artery disease and to assess prognoses among Japanese patients (26,27). A normal file of 201Tl with CZT detectors should be established to improve the diagnosis of coronary artery disease using stress/rest myocardial SPECT.

Future perspectives and conclusions
Global hypoperfusion might be underestimated, because myocardial SPECT allows visualization of spatially relative perfusion abnormalities. Abnormalities in segments adjoining those that are clearly under-perfused are also difficult to evaluate. Several studies have established the diagnostic accuracy of applying washout rates on myocardial perfusion scintigraphy with 201Tl to planar and myocardial SPECT images. This is especially important for patients with balanced ischemia and with minimally reduced uptake on myocardial SPECT. Washout rates are semi-automatically calculated by the software integrated into conventional Anger cameras (28, 29). The CZT detectors do not include software to calculate washout rates on images acquired by myocardial perfusion scintigraphy with 201Tl. Such software should be developed to improve diagnostic accuracy.

Myocardial perfusion scintigraphy using CZT detectors and 201Tl has been clinically applied in Japan. Some images differ between 201Tl with CZT detectors and conventional Anger cameras. Further investigation is required to optimize myocardial perfusion scintigraphy with 201Tl.

Acknowledgments
None

Sources of funding
None

Conflicts of interest
None to declare.

Reprint requests and correspondence:
Mamoru Nanasato, MD, PhD
Cardiovascular Center, Nagoya Daini Red Cross Hospital, 2-9 Myoken-cho, Showa, Nagoya, Aichi, Japan 466-8650
E-mail: nana@nagoya2.jrc.or.jp

References

Fig. 3 Comparison of left ventricular ejection fraction determined by ECG-gated myocardial D-SPECT and A-SPECT with 201Tl
Left column: results of linear regression analysis. Right column, mean difference in EF. A-SPECT: with conventional Anger camera; D-SPECT: with CZT detectors; EF: ejection fraction.

