Sarcoidosis is a multisystem disease pathologically characterized by non-caseating granuloma. Cardiac involvement remains an important prognostic factor for sarcoidosis patients (1), and the definitive and accurate diagnosis of cardiac sarcoidosis (CS) is thus warranted. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) has been used as a noninvasive approach not only for CS diagnoses but also for the evaluation of therapeutic effects and prognoses (2). The following is a brief review of the objective and quantitative assessments of CS using 18F-FDG PET.

Visual assessment

18F-FDG is an analog of glucose used as a marker of glucose metabolism. 18F-FDG uptake in the inflammatory lesion is due to the activation of inflammatory cells such as neutrophil, monocytes, macrophages and so on with increased expression of glucose transporters and hexokinase. Therefore, sarcoidosis lesion with active inflammation can be visualized as obvious 18F-FDG accumulation.

For the visual analysis of 18F-FDG uptake patterns, Morooka et al. proposed a visual four-point scale of cardiac 18F-FDG uptake compared to the hepatic uptake: (i) lower than the hepatic uptake, (ii) similar to the hepatic uptake, (iii) somewhat higher than the hepatic uptake, and (iv) notably higher than the hepatic uptake (3).

In the most common classification of cardiac 18F-FDG accumulation, uptake patterns are divided into four groups based on a visual analysis: (i) without myocardial 18F-FDG uptake, (ii) definite diffuse uptake in the entire left ventricle, (iii) definite focal uptake, and (iv) diffuse uptake in the ventricular wall.
(LV) wall, (iii) focal uptake, and (iv) focal on diffuse 18F-FDG uptake in the LV wall (4). This four group classification was initially proposed by Ishimaru et al. and was also addressed in the Japanese Society of Nuclear Cardiology Imaging guidelines (5, 6). In addition, a ‘diffuse at base’ uptake pattern was often associated with inadequate suppression of physiological uptake. This pattern should also be carefully interpreted when examining the 18F-FDG PET images of CS patients (7). Morooka et al. also reported that a diffuse uptake or basal ring-like and/or lateral uptake to be physiological in patients with suspected or known CS (3). Clinical information such as the electrocardiogram abnormality with conduction abnormalities, ventricular arrhythmia, serum free fatty acid value at the injection of 18F-FDG and presence of extra-CS supported whether the uptake was physiological or not (3, 8, 9). Of course, multi-modality imaging combined late gadolinium enhancement of MRI, perfusion imaging and 123I-BMIPP SPECT was useful to assess the active inflammatory processes and myocardial damage in patients with CS (10, 11). The physiological myocardial 18F-FDG uptake may sometimes make it difficult to evaluate FDG PET imaging in sarcoidosis. The inter-observer agreement of cardiac 18F-FDG uptake image patterns was improved by detailed pre-scan dietary preparation (12).

18F-FDG uptake is expected to be useful not only to diagnose but also to predict the cardiac events related to CS. For example, in their study of 118 consecutive patients suspected of having CS, Blankstein et al. reported that the presence of increased 18F-FDG uptake and a perfusion defect were associated with an increased risk of cardiac death or ventricular arrhythmia (13).

A 17-segment model following a statement from the American Heart Association is used to assess the distribution of 18F-FDG uptake (Fig. 1). The location of 18F-FDG uptake is of course important to assess CS. In particular, focal 18F-FDG uptake in the interventricular septum was associated with atrioventricular (AV) block (9).

Because the physiological 18F-FDG uptake of the right ventricle (RV) is observed less frequently compared to such uptake in the LV, the evaluation of the RV’s 18F-FDG uptake provides helpful information. 18F-FDG PET has demonstrated that RV involvement is less frequent in CS than LV involvement. However, patients who had RV 18F-FDG uptake showed a greater number of LV-involved segments (14), and RV 18F-FDG uptake was associated with subsequent death or ventricular tachycardia (VT) (13). Right ventricular 18F-FDG uptake is thus also expected to be useful in diagnosing cardiac involvement and predicting cardiac events.

Semi-quantitative analysis

The use of the standardized uptake value (SUV) is now a common semi-quantitative method in clinical practice for evaluating the disease activity and monitoring the patient’s response to therapy. The SUV is defined as the tissue activity concentration divided by the injected dose and the patient’s body weight. The maximum SUV (SUVmax) of the whole heart or the 17 segments of the LV is frequently used because these values are simple to estimate. The SUVmax of a cardiac lesion is measured using a volume of interest inserted on the fused axial image encompassing the entire heart, followed by a review to ensure that adjacent non-cardiac 18F-FDG-avid structures are excluded. An image fused with computed tomography (CT) morphologic information helps to divide the cardiac 18F-FDG uptake into 17 segments if there is no positive
uptake segment.

McArldle et al. reported that there may be a relationship between the degree of 18F-FDG uptake and the clinical presentation (particularly that of VT), because both the SUVmax and the maximum mean segmental SUV were significantly higher in CS patients with ventricular tachyarhythmia compared to those with advanced AV block and compared to clinically silent CS patients (2). Yokoyama et al. demonstrated that the myocardial SUVmax was significantly higher in patients with CS compared to non-CS patients in the condition of overnight fasting (over 18 hours) followed a low-carbohydrate diet (15). Higher diagnostic accuracy compared to a visual analysis can be obtained using semi-quantitative methodology. Tahara et al. calculated the average, standard deviation, and coefficient of variation (COV) of the SUV among 17 segments of cardiac 18F-FDG uptake (16). They reported that the average of the SUV showed no significant difference; however the standard deviation and COV in the CS patients were significantly higher compared to those of the controls, the non-CS patients, and dilated cardiomyopathy patients. Therefore, the identification of the heterogeneity of myocardial 18F-FDG uptake may be a useful diagnostic marker of CS.

Volume-based analysis

The SUVmax reflects the value of a single voxel and thus does not account for the metabolism of the entire distribution of a target lesion. A volume-based analysis of parameters measured by 18F-FDG PET such as those of the metabolic tumor volume (MTV) and total lesion glycolysis (TLG) have emerged as new assessment tools, mainly for assessing malignant tumors. The cardiac metabolic volume (CMV) is similar in concept to the MTV, and is measured by contouring margins defined by thresholds such as the liver uptake, the blood pool SUV, the fixed value of SUV, or the %uptake of the SUVmax (8, 17). The cardiac metabolic activity (CMA) is calculated by multiplying the CMV by the corresponding average SUV, which is similar in concept to the TLG (Fig. 2) (18). Osborne et al. reported that the reduction of the SUVmax and CMV in a comparison of pre- and post-therapy values was associated with improvement in the left ventricular ejection fraction (LVEF), which suggested that serial PET scanning might help guide the titration of immunosuppressive therapy to improve LV function or prevent heart failure in CS (19). Ahmadian et al. demonstrated that the CMA was greater in patients with lower LVEF and preceding adverse clinical events such as VT, sudden cardiac death, and heart block (18). In addition, CMA was the only independent predictor of events including ventricular tachycardia (VT), sudden cardiac death, worsening atrio-ventricular block, cardiac hospitalization and new or worsening heart failure using binary logistic regression analysis with CMA, SUVmax and total defect score of perfusion image. A volume-based analysis using 18F-FDG PET might become a tool for guiding the titration of immunosuppressive therapy and predicting cardiac events.

Conclusion

We have briefly reviewed objective and quantitative assessments of cardiac sarcoidosis using 18F-FDG PET. Visual assessment is a standard method to evaluate the presence of
abnormal 18F-FDG uptake by active inflammation. The semi-quantitative method using the SUV is a simple way to aid the visual assessment to achieve a more accurate diagnosis. Although performing a volume-based analysis is not always easy in clinical settings, such an analysis provides information that can be used to predict clinical events. In addition, the SUV and a volume-based analysis might be useful for the objective monitoring of the patient response to immunosuppressive treatment.

Acknowledgments

We thank Eriko Suzuki for her support.

Sources of funding

This study was supported in part by grants from the Innovation Program of the Japan Science and Technology Agency and a Hokkaido Heart Association Grant for Research (O.M.).

Conflicts of interest

All authors have no conflict of interest.

Reprint requests and correspondence:

Osamu Manabe, MD, PhD
Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan
E-mail: osamumanabe817@med.hokudai.ac.jp

References