Cardiovascular disease (CVD) has become the main cause of death in Latin America as a consequence of the demographic, economic and social changes experienced by the region. In the last decade, there have been important improvements in nuclear cardiology (NC) practice, but there is still great heterogeneity among countries regarding availability of technology, education, and human resources. The total number of gamma cameras in the region is above 1,300, with an average of about 2.3 per million inhabitants. Nearly all cameras have SPECT capabilities, almost 10% with hybrid technology (SPECT/CT). PET technology is steadily increasing, but perfusion agents are not available at most sites. Training and education are probably the most important challenges for the development of NC practice in the region; formal programs for physicians and technologists only exist in some countries, with different curricular approaches. Distance training and other educational tools have been successfully used and are expected to expand. The future of NC in Latin America is encouraging, with wide clinical utilization and showing potential for growth as a cost-effective diagnostic method. Education of referring physicians and training in other imaging techniques will become increasingly important for nuclear cardiologists, since a multimodality approach in cardiac imaging would contribute to a better management of patients with CVD. It also seems necessary to increase the number of indexed publications in NC and to improve the quality of regional journals. National, regional, and international collaborative networks are key factors for the development of the specialty in the region.

Keywords: International perspective, Latin America, Nuclear cardiology
Ann Nucl Cardiol 2017; 3 (1): 176-179

doi: 10.17996/anc.17-00016

Fernando Mut
Nuclear Medicine Service, Spanish Association Hospital, 1443 Cassinoni St., 11200 Montevideo, Uruguay
E-mail: mut.fer@gmail.com
SPECT cameras, the majority of which dual-headed, and per million in 2003). Near the totality of instruments are an average of about 2.1 per million inhabitants (from about 1.3 million in 2003). According to data collected through 2014 by the International Atomic Energy Agency (IAEA) (3), the total number of gamma cameras worldwide, and how differences in educational systems, regulations, availability of human and material resources, and prevalence of CVD, accounted for variations. In that session, speakers from different regions described the cost and number of SPECT technology was the standard in most laboratories, although some still performed planar studies. Myocardial perfusion with 99mTc-sestamibi continues to be the most frequently used NC procedure. The use of 123I-MIBG is mainly restricted to Brazil and probably clinically underutilized, while 131I-BMIPP or other SPECT metabolic tracers are not available. Gated blood-pool has disappeared from the clinical scenario with the exception of cardiotoxicity evaluation. Physical stress is performed as first choice when possible, but dipyridamole continues to be the preferred stress pharmacologic agent due to the high cost and restricted availability of newer vasodilators such as regadenoson.

Human resources

With regard to human resources, it is estimated that currently, there is in average at least one physician and 1.6 technologists per gamma camera (4). The responsibility to perform NC procedures relies mainly on certified cardiologists in Argentina and partially in Brazil, while in most other countries nuclear physicians are in charge, with a cardiologist (sometimes at a fellow level) usually supervising the stress test. Cardiologists performing nuclear procedures on their own are generally required to hold a special license or certification on the safe use of radioactive isotopes.

Challenges in NC in LA

Training and education of NC specialists

Training and education are probably the most important challenges for the development of NC practice in the region. Formal education in nuclear medicine or NC for physicians and technologists is unfortunately not common in LA, with the exception of few countries with tradition in the field like Argentina, Brazil, Chile and Uruguay, while others like Colombia, Costa Rica, Cuba, Mexico and Venezuela have been implementing teaching and training programs with varying degrees of depth, scope, and sustainability, and there...
is nothing in place in most other nations. Since complete, detailed information is scarce about educational opportunities and programs across most developing regions, the World Federation of Nuclear Medicine and Biology (WFNMB) has started conducting a global initiative to gather data on credentialing and training of nuclear medicine specialists, and the Latin-American Association of Nuclear Medicine and Biology Societies (ALASBIMN) has implemented an on-line electronic poll for members to include educational and training information, whose results will be shortly available. Preliminary, however, it can be said that established programs vary widely across countries in terms of contents and duration. Some cover radiation medicine as a whole with possibilities of specific training in radiology, nuclear medicine, or radiation therapy during the last phase of training, while other approaches consider separate specialties, with cross-training between nuclear medicine and cardiology in the case of NC. In all cases, however, a minimum of specific training in radiation safety is required for clinical practice, and a special license is usually mandatory for handling radioactive materials. To compensate for the lack of formal programs in most countries, on-line educational tools for technologists (now extended for all nuclear medicine professionals) have been developed and made available to member states by the International Atomic Energy Agency (IAEA) (5), with very successful results.

Referring physicians

Education of referring physicians on the clinical usefulness of NC is essential for the appropriate utilization of the method. Little exposure of many professionals to publications and educational instances seems to have been a major limitation for a more rapid growth of the specialty in the region. NC methods provide important diagnostic and prognostic clinical information with which all cardiologists should be conversant. Published recommendations of the American College of Cardiology (ACC) endorsed by the American Society of Nuclear Cardiology (ASNC) state that training for cardiology fellows should be divided into three levels according to the desired degree of involvement and responsibilities in NC (6), and these could form the base for academic programs, adapted for local characteristics and needs.

Research aspects

Scientific production in the field of NC is difficult to estimate, but one can imagine that it follows the general trend. The contribution of LA to world science is scarce in terms of output and visibility; however, the region has increased the number of articles published in the last decades, although the individual participation of each country is very unequal. A bibliography search regarding biomedical articles in general and on cardiology in particular, showed that in 2003, LA published only 2.2% of the references in Medline, which nevertheless represents a 30% increase compared to 1999 (7). In a more recent publication, Latin America was a minor contributor of research published in high impact journals with only 0.38% of the articles citing a corresponding author affiliated with a LA institution (8). In general, LA journals are underrepresented in the international literature. Among other factors, budget limitations and lack of regularity in the frequency of appearance have negative consequences in international appreciation of LA journal quality (9). Paradoxically, these publications are discriminated by local researchers, in favor of indexed foreign publications. A search of international databases showed that, from a total of 14 cardiology journals from LA, only two are included in Medline (10). As a consequence, many regional studies are absent from international index evaluations, perhaps also due to an existing negative bias to quote studies in languages other than English. Therefore, it seems necessary to increase the number of indexed publications in NC and to improve the quality and prestige of regional journals.

Future direction of NC in LA

The future of NC in LA is encouraging, with wide clinical utilization and showing a potential for growth as a cost-effective diagnostic tool. PET technology is steadily increasing, but perfusion agents are still not available at most sites, indicating a possibility to expand the capacities to cover the needs in selected patients. Adrenergic innervation studies with 123I-MIBG, now exceptionally used, could provide valuable information in patients with heart failure, especially those with Chagas’ cardiomyopathy. Training in other imaging techniques will become increasingly important for nuclear cardiologists, since a multimodality approach in cardiac imaging would contribute to a better management of patients with CVD. National, regional, and international collaborative networks, including support from scientific societies and organizations such as the IAEA, ASNC, ALASBIMN, and local academic societies and institutions, are key factors for the development of the specialty in the region.

Acknowledgments

I would like to acknowledge many colleagues from and outside LA, and very specially the Nuclear Medicine and Diagnostic Imaging Section of the IAEA, Vienna, for their contribution to the development and strengthening of NC in the region.

Sources of funding

None.
Conflicts of interest
None.

Reprint requests and correspondence:
Fernando Mut, MD
Nuclear Medicine Service, Spanish Association Hospital, 1443 Cassinoni St., 11200 Montevideo, Uruguay
E-mail: mut.fer@gmail.com

References