INHIBITION OF TYROSINE HYDROXYLASE
BY AQUAYAMYCIN

Saburo Ayukawa, Tomio Takeuchi, Masaji Sezaki,
Takeshi Hara and Hamao Umezawa
Institute of Microbial Chemistry, Shinagawa-ku, Tokyo

Toshiharu Nagatsu
Department of Biochemistry, School of Dentistry,
Aichi Gakuin University, Nagoya

(Received for publication January 31, 1968)

Aquayamycin was found to be a strong inhibitor of tyrosine hydroxylase.
It inhibits tyrosine hydroxylase by 50 % at 3.7×10⁻⁷ M. The inhibition is non-
competitive with tyrosine. The inhibition by 4×10⁻⁷ M aquayamycin increases
when the concentration of 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine
is increased from 2×10⁻⁴ M to 1×10⁻³ M. The inhibition of tyrosine hydroxy-
lase by aquayamycin is reversed by Fe⁺⁺.

Aquayamycin is a new antibiotic discovered by Sezaki et al.¹) which was found
to be a strong inhibitor of tyrosine hydroxylase²). Though the modus of inhibition
is different, 50 % inhibition concentration of aquayamycin is about the same as that
of 3-iodo-α-methyl-DL-tyrosine, the known strongest inhibitor. Since tyrosine hydro-
xylase is the rate-limiting step in the biosynthesis of norepinephrine in vivo³), the
inhibitory action of aquayamycin is of biological interest. In this paper, studies on
the inhibition by aquayamycin of tyrosine hydroxylase are reported.

Materials and Methods

Crystalline aquayamycin was prepared as described by Sezaki et al.¹) and employed
for all the experiments. Its properties have been described¹). L-Tyrosine-¹⁴C (uniformly
labeled, 297 mc/m mole) was purchased from Daiichi Pure Chemical Co., Ltd., and 2-
amino-hydroxy-6,7-dimethyltetrahydropteridine (B grade) from California Corporation for
Biochemical Research. Fresh beef adrenals packed in ice were obtained from a slaughter
house. Tyrosine hydroxylase was partially purified from homogenates of beef adrenal
medulla by the method described by Nagatsu et al.²) Tyrosine hydroxylase activity
was assayed by measuring 3,4-dihydroxyphenylalanine-¹⁴C formed from tyrosine-¹⁴C. The
standard reaction mixture consisted of 200 μmoles of acetate buffer (pH 6.0), 0.1 μmole of
L-tyrosine containing 1.1×10⁴ c.p.m. of L-tyrosine-¹⁴C, 100 μmoles of mercaptoethanol,
1 μmole of 2-amino-4-hydroxy-6,7-dimethyl-tetrahydropteridine, 0.2 ml of enzyme (1 mg
protein) solution, in a total volume made to 1.0 ml with distilled water. The reaction
was carried out at 30°C for 15 minutes. 3,4-Dihydroxyphenylalanine-¹⁴C was extracted
by alumina column chromatography and was measured with Beckman Liquid Scintillation
System, a Soft-Beta Counting Spectrometer as described by Nagatsu et al.²) The efficiency
of the extraction process was 77.8 % and the counting efficiency was 70.5~80 %. The
reaction was also carried out in the reaction mixture containing the boiled enzyme solution
and the result was taken as the blank value.
Results and Discussion

The effect of aquayamycin on the tyrosine hydroxylase reaction was studied by determining 3,4-dihydroxyphenylalanine produced in the standard reaction mixture described above for 15 minutes at 30°C. Under these conditions, in the absence of aquayamycin, about 10% of tyrosine added was oxidized to 3,4-dihydroxyphenylalanine. The amount of 3,4-dihydroxyphenylalanine produced in the presence of aquayamycin at various concentrations as a percentage of that produced in the absence of the antibiotic is shown in Fig. 1. As seen from the figure, the concentration of aquayamycin required for 50% inhibition was 3.7×10^{-7} M. In another experiment, the concentration of tyrosine was varied and the results were plotted according to the Lineweaver-Burk equation. As seen from the results shown in Fig. 2, aquayamycin inhibits tyrosine hydroxylase reaction non-competitively with tyrosine and the K_i value obtained from the figure is 3.6×10^{-7} M. Among known inhibitors of tyrosine hydroxylase reaction, 3-iodo-α-methyl-DL-tyrosine has shown the strongest inhibition, and according to Udenfriend et al. under the similar experimental conditions as described above, the concentration of this compound for 50% inhibition is 3×10^{-7} M and K_i value is 1.8×10^{-7} M, though this compound inhibits this enzyme reaction competitively with tyrosine. Considering these reported values, it can be said that aquayamycin is a strong inhibitor of tyrosine hydroxylase reaction.
In order to see the effect on the inhibition by aquayamycin of the pteridine cofactor, the concentration of 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine was varied, and its effect on tyrosine hydroxylase reaction was studied in the presence and the absence of aquayamycin (4x10^{-7} M). As seen from the results shown in Fig. 3, in the absence of the antibiotic, the rate of hydroxylation of tyrosine increases with the increase of the pteridine cofactor up to 10^{-3} M, but if the concentration of the pteridine cofactor exceeds 10^{-3} M, then the rate of the hydroxylation decreases. This result conforms with the observation by Ellenbogen et al., who have reported inhibition of tyrosine hydroxylase reaction by high concentrations of the pteridine cofactor. The results shown in Fig. 3 also indicate that inhibition by aquayamycin is dependent on the concentration of the pteridine cofactor. The inhibition is hardly observed with concentrations of the pteridine cofactor less than 2x10^{-4} M and with concentrations from 2x10^{-4} M to 1x10^{-3} M inhibition by the antibiotic gradually increases. With concentrations higher than 1x10^{-3} M of the pteridine cofactor, aquayamycin at 4x10^{-4} M shows 90~95% inhibition.

Involvement of ferrous iron as a cofactor for tyrosine hydroxylase has been known and it was reported...
by Nagatsu et al.\(^2\) that \(\alpha,\alpha'-\)dipyridyl showed a marked inhibition of the enzyme at \(10^{-3}\)M which was reversed by the addition of \(\text{Fe}^{++}\). The results of an experiment testing the effect of \(\alpha,\alpha'-\)dipyridyl (\(4 \times 10^{-4}\)M) on the tyrosine hydroxylase reaction with varied concentrations of the pteridine cofactor are indicated in Fig. 3. Inhibition by this chelating agent occurs at all levels of the pteridine cofactor.

Ikeda, Fahien and Udenfriend\(^7\) reported that tyrosine hydroxylase highly purified by DEAE Sephadex chromatography required ferrous ion for the reaction. It is also known that the tyrosine hydroxylase reaction is significantly stimulated by \(\text{Fe}^{++}\). We observed that the degree of stimulation by \(\text{Fe}^{++}\) was considerably different with each batch of the enzyme. Single enzyme preparation was used throughout all experiments reported in this paper. As shown in Fig. 4, preincubation of this enzyme with ferrous sulfate stimulates the reaction. The rate of hydroxylation by this enzyme was stimulated from 1.3 to 1.9 fold depending on the concentration of \(\text{Fe}^{++}\) added. The optimum concentration giving maximal stimulation was \(2.5 \times 10^{-3}\)M ferrous sulfate. If the concentration of \(\text{Fe}^{++}\) exceeds the optimum, it shows inhibition. Fig. 4 includes also the results of an experiment testing the rate of the hydroxylation of tyrosine in the presence of \(3.4 \times 10^{-7}\)M aquayamycin by the enzyme preincubated with various concentrations of \(\text{Fe}^{++}\). As seen from this figure, the inhibition of tyrosine hydroxylase by aquayamycin is reduced by the preincubation of the enzyme with \(\text{Fe}^{++}\). However, a high concentration of \(\text{Fe}^{++}\) such as \(3.3-5.0 \times 10^{-8}\)M was necessary to overcome completely the inhibition caused by \(3.4 \times 10^{-7}\)M aquayamycin. In the presence of \(\text{Fe}^{++}\) at higher than \(5.0 \times 10^{-8}\)M, no inhibition was caused by \(3.4 \times 10^{-7}\)M of aquayamycin. The structure of aquayamycin is not known but a quinone structure has been reported\(^1\). The non-competitive relationship with tyrosine suggests that there would be no structural relationship between tyrosine and aquayamycin. The relation of the inhibition caused by aquayamycin to the pteridine cofactor shown in Fig. 3 is complicated. Though mode of inhibition caused by aquayamycin is not the same as that caused by a chelating agent, \(\alpha,\alpha'-\)dipyridyl, the inhibition by this antibiotic is also reversed by \(\text{Fe}^{++}\). The high concentration of the pteridine factor causes inhibition and this inhibition has been reported by Ellenbogen et al.\(^6\) to be reversed by \(\text{Fe}^{++}\). It may be considered that inhibition by aquayamycin and by high concentration of pteridine cofactor may be caused by a similar mode of action.

References