STRUCTURAL FEATURE
OF ANTIBIOTIC A-396-I

Sir:

We have previously reported1 the isolation
of a new water-soluble basic antibiotic A-
396-I from Streptoverticillium eurocidicus
A-396-I, which also produces in nearly equal
amounts hygromycin B. The molecular
formula C\(_{19}H_{35}O_{13}N_3\) and the IR spectrum
indicated close similarity of this antibiotic
to destomycin A2,3 and hygromycin B5,6.

The antibiotic A-396-I (100 mg) was hy-
drolyzed with 4 N HCl at 105°C for 10 hours.
The hydrolysate was passed through an XE-
64 (Na+) column and eluted with 14 % am-
onium hydroxide. The eluate, exhibiting
positive ninhydrin reaction, was concentrated
to dryness to give colorless crystals (16 mg).

By paper chromatographic examination [sol-
vent 1: \(\pi\)-propanol - pyridine - acetic acid
- water (15: 10: 3: 12); solvent 2: \(\pi\)-butanol
- acetic acid - water (4: 1: 2)] the compound
showed somewhat solwer mobility and a
different ninhydrin color in comparison with
a sample of (+) N-methyl-2-deoxystrept-
amine \(\left[\alpha\right]_D^{20} +38.6\pm 0.9^\circ\) (c 0.889, H\(_2\)O),
prepared from a hydrolysate of hygromycin
B). However, quite similar mobility and
color to those of an authentic specimen of
2-deoxystreptamine (Rf 0.40 and 0.20 in the
solvents 1 and 2) was observed. Confirma-
tion of the identity of this compound with
2-deoxystreptamine was made by direct
comparison of the NMR spectra and GLC
using the authentic specimen. Samples were
trimethylsilylated with 25 % bis-(trimethyl-
silyl)-acetamide in pyridine by heating at
75°C for 20 minutes, and analyzed by a
Perkin-Elmer Gas Chromatograph Model
881, on a 6 ft glass column packed with
3.0 % SE-30 coated Chromosorb P, carrier
gas: N\(_2\), temperature programming: 120~
250°C (4°C/minutes). Both samples gave a
peak with retention time of 15.0 minutes.

A ninhydrin-negative effluent fraction
from the chromatography on the resin was
treated with 0.1 N sodium hydroxide for 20
hours at room temperature and gave a nin-
hydrin-positive tests. This was thought to
mean a conversion of destomycin lactam,
contained in this fraction, to its acid form3.

A-396-I was peracetylated with acetic an-
hydride in pyridine and subjected to mass
spectrometry, and the spectrum compared
with that of peracetylated hygromycin B.
In the spectrum of peracetylated A-396-I,
molecular ion peak was not observed. How-
ever, many peaks corresponding to the
fragment ion peaks in the peracetylated

Another portion of A-396-I (20 mg) was
hydrolyzed with 0.5 N H\(_2\)SO\(_4\) at 100°C for 2
hours. The hydrolysate was successively
passed through a Dowex 50 (H+) and then
Dowex I (OH−) columns. Lyophilization of the
effluent gave a colorless powder (1.5 mg).

A-396-I was peracetylated with acetic an-
hydride in pyridine and subjected to mass
spectrometry, and the spectrum compared
with that of peracetylated hygromycin B.

The NMR spectra of A-396-I and hygro-
mycin B hydrochlorides measured in D\(_2\)O
(Figs. 1 and 2) are quite similar except that
a signal (\(-\text{NCH}_3\), 2.81 ppm, 3H) given in
hygromycin B, was not observed in A-396-
I; an anomeric proton (5.29 ppm, J=3 cps)
was observed in the spectra of the both
antibiotics.

A-396-I was peracetylated with acetic an-
hydride in pyridine and subjected to mass
spectrometry, and the spectrum compared
with that of peracetylated hygromycin B.
In the spectrum of peracetylated A-396-I,
molecular ion peak was not observed. How-
ever, many peaks corresponding to the
fragment ion peaks in the peracetylated
hygromycin B with difference of mass number 14 were regularly observed: 916 (930)* (M-CH₃CO₂), 915 (929) (M-CH₃CO₂H), 856 (870) (M-CH₃CO₂H-CH₂CO₂), 855 (869) (M-2CH₃CO₂H), 813 (827) (M-CH₃CO₂H-CH₃CO₂-CH₂CO₂), 796 (810) (M-2CH₃CO₂H-CH₂CO₂), 771 (785) (M-2CH₃CO₂H-2CH₂CO₂), 736 (750) (M-3CH₃CO₂H-CH₂CO₂), 711 (725) (M-CH₃CO₂H-2CH₂CO₂-2CH₂CO₂), 669 (683) (M-3CH₃CO₂H-3CH₂CO₂), 651 (665) (M-2CH₂CO₂H-2CH₂CO₂-2CH₂CO₂), 609 (623) (M-CH₃CO₂H-3CH₂CO₂-3CH₂CO₂). A few common peaks in both spectra were also observed in the lower mass number region: 586 (B-CH₃CO₂), 544 (A-2CH₃CO₂), 543 (A-CH₃CO₂H-CH₂CO₂), 526 (B-2CH₂CO₂H), 483 (A-2CH₃CO₂H-CH₂CO₂), 358 ([C+O, H]-CH₃CO₂H), 298 ([C+O, H]-2CH₂CO₂H). These tentative assignments (described in parentheses) are considered to be reasonable, if the assumed structure of peracylated A-396-I is as shown in Fig. 3. Thus, the sequence of the three moieties of A-396-I is suggested to be the same one as in hygromycin B.

The partial structure of hygromycin B has been elucidated by Wiley et al. Elucidation of the structure of destomycin A has been completed by Kondo et al. More recently Neuss et al. have shown that the structural difference between both antibiotics consists in the presence in hygromycin B of (+)-N-methyl-2-deoxystreptamine in the

* Peaks observed with peracylated hygromycin B.
locus of (−)N-methyl-2-deoxystreptamine in destomycin A. From the above data, the structure of A-396-I is strongly suggested in relation to the established structures of the related antibiotics, except for its stereochemistry.

Acknowledgements

We are indebted to Dr. N. Neuss (The Lilly Research Laboratories) for hygromycin B, Prof. K. L. Rinehart, Jr. (University of Illinois) and Prof. M. Nakajima (Kyoto University) for 2-deoxystreptamine.

Jun’ichi Shoji
Yuzo Nakagawa (in part)
Shionogi Research Laboratory
Shionogi & Co., Ltd.
Fukushima-ku, Osaka, Japan

(Received October 12, 1970)

References