SIR:

The first total synthesis of antifungal antibiotic antimycin A₃ (blastmycin) in a form of diastereomeric mixture has recently been reported from our laboratory.¹ We now wish to report the total synthesis of natural antimycin A₃ (1).²

The previous paper¹ showed that the modified Reformatsky reaction of 2-benzyl-2-bromohexanoate afforded the mixture of the diastereomeric 2-benzyl-4-benzoyloxy-2-butyl-3-hydroxypentanoate which contained ca. 55 % of the major racemic diastereomer (2) and 2 could be transformed into the racemate of natural blastmycinone.³ It has now been found that the preparative isolation of the major diastereomer (2) by silica gel chromatography of the diastereomeric mixture using a solvent system petroleum ether-diisopropyl ether (3: 1) gave the fraction consisting of 2 contaminated by ca. 14 % of the minor diastereomer.⁴ This fraction of 2 was O-acylated with isovaleryl anhydride in pyridine and the resulted major diastereomer (3) corresponding to 2 was isolated as a single racemate by silica gel column chromatography of the reaction product with a solvent system n-hexane - diisopropyl ether (9: 1) in a 75 % yield: b.p. 115~119°C (bath temp./0.002 mmHg); nD³ 1.4708; δ (CDCl₃) 1.21 (d, 4-CH₃, J=6.4 Hz), 1.38 (s, O-Bu*), 3.58 (dq, 4-H, J₃,₄=4.0 Hz) and 5.44 (dd, 3-H, J₂,₃=8.2 Hz).

Hydrogenolysis of 3 over palladium in methanol gave 2-benzyl-2-butyl-4-hydroxy-3-isovaleryloxypentanoate (4) in a 90 % yield: δ (CDCl₃), 1.18 (d, 4-CH₃, J=6.5 Hz), 3.89 (dq, 4-H, J₃,₄=5.0 Hz) and 5.10 (dd, 3-H, J₂,₃=7.8 Hz).

The racemic 4-hydroxy ester (4) was condensed with N-benzoyloxy carbonyl-O-t-butyl-L-threonine⁵ in the presence of N,N'-dicyclohexyl carbodiimide (DCCI) and pyridine to yield a mixture of two optically active diastereomers (5a, 5b). On silica gel column chromatography of the mixture with a solvent system petroleum ether - diisopropyl ether (2: 1), the less polar diastereomer (5a) was effectively separated (29 % from 4) as a syrup from its more polar isomer (5b)*: [α]D³ +10° (c 11.4, chloroform).

Lithium aluminium hydride reduction of 5a at -40°C gave the optically active dihydroxy ester [(+)-6] (65 %): m.p. 48.0~48.8°C; [α]D³ +16° (c 2.4, methanol).

Hydrolysis of (+)-6 afforded the hydroxylactone (-)-7 (67 %): m. p. 50.0~51.0°C; [α]D³ -18° (c 1.6, methanol) [Lit.⁶, m. p. 49~50°C, [α]D³ -5.27° (c 7.8, methanol)]; δ (CDCl₃), 1.45 (d, 4-CH₃, J=6.2 Hz), 2.58 (m, 2-H), 3.84 (dd, 3-H, J₃,₄=8.5 Hz) and 4.25 (dq, 4-H, J₃,₄=7.0 Hz); νmax 3470 (OH), and 1745 cm⁻¹ (lactone). The IR spectrum (in nujol) of (-)-7 was identical with that⁷ of an authentic sample of natural blastmycinolactol.

* The following data were obtained for isolated 5b: yield 27 %; [α]D³ -6° (c 10.1, chloroform).
Preparation of blastmycinone [(+)-8] from the synthetic hydroxylactone (-)-7 was carried out with isovaleric anhydride and pyridine: \([\text{Lit.}^9, [\alpha]_D^{20} +11.5^\circ (c 20.8, \text{chloroform})]\). The gas chromatogram (polyester succinate column, He gas) of (+)-8 showed a single peak having the same retention time as one of the two peaks of natural blastmycinone so that the peak of longer retention time corresponds to the blastmycinone having the O-isovaleryl group.\(^1\) 2c) The chemical shifts and coupling constants of the ring protons and ring methyl protons in the NMR spectrum (CDCl\(_3\)) of the synthetic blastmycinone were identical with those in the spectrum\(^*\) of an authentic sample of natural blastmycinone.

De-\(t\)-butylation of 5a with trifluoroacetic acid gave the free acid (9), which was cyclized with trifluoroacetic anhydride in benzene at 75°C for 8 hours to afford the intramolecular cyclization product, 3-benzyloxycarboxamido-7-butyl-4,9-dimethyl-1,5-dioxa-8-isovaleryloxycyclononane-2,6-dione (10) as a colorless needle in a 1% yield: \(\delta (\text{CDCl}_3), 1.09 (d, 4-\text{CH}_3, J=7.0 \text{ Hz}), 1.27 (d, 9-\text{CH}_3, J=6.2 \text{ Hz}), 5.17 (t, 3-H, J_3,6'=J_4,5'=8.0 \text{ Hz}), 7.35 (t, 5'-H, J_{5',6'}=J_{4',5'}=8.0 \text{ Hz}), 7.95 (dd, 4'-H or 6'-H, J_{4',5'}=2.0 \text{ Hz}), 8.03 (d, NH), and 8.25 (dd, 6'-H or 4'-H).

Removal of the benzyloxy carbonyl group of 10 by hydrogenolysis followed by N-acylation with O-benzyl-3-nitrosalicylic acid N-hydroxysuccinimide ester\(^8\) yield 3-(O-benzyl-3'-nitrosalicylamido)-7-butyl-4,9-dimethyl-1,5-dioxa-8-isovaleryloxycyclonanone-2,6-dione (11) as a glassy solid in a 65% yield: \(\delta (\text{CDCl}_3), 1.09 (d, 4-\text{CH}_3, J=7.0 \text{ Hz}), 1.27 (d, 9-\text{CH}_3, J=6.2 \text{ Hz}), 5.17 (t, 3-H, J_3,6'=7.6 \text{ Hz}), 5.55 (dq, 4-H, J_{4',5'}=7.6 \text{ Hz}), 7.35 (t, 5'-H, J_{5',6'}=8.0 \text{ Hz}), 7.95 (dd, 4'-H or 6'-H, J_{4',5'}=2.0 \text{ Hz}), 8.03 (d, NH), and 8.25 (dd, 6'-H or 4'-H).

The product (11) was again hydrogenolyzed and then N-formylated with 98% formic acid and DCCI. The product was purified by preparative layer chromatography using silica gel with \(n\)-hexane-ethyl acetate (5:3) and recrystallization from ether-petroleum ether to afford antimycin A3 (1) as a colorless prism in a 65% yield: m.p. 174~174.5°C [\(\text{Lit.}, 174.5~175.5^\circ \text{C}^9, 168~169^\circ \text{C}^{10}, 170.5~171.5^\circ \text{C}^{11}\)]; \([\alpha]_D^{25} +80^\circ, [\alpha]_D^{25} +95^\circ, [\alpha]_D^{25} +190^\circ (c 0.2, \text{chloroform})]\) [\(\text{Lit.}, [\alpha]_D^{25} +79.4^\circ (c 1, \text{chloroform})^{12}\), \([\alpha]_D^{25} +64.3^\circ (c 1.0, \text{chloroform})^{13}\)]\(^*\); \(\lambda_{\text{max}}^{\text{CHCl}_3} 225 \text{ nm} (\log \varepsilon=4.52)\) and 320 nm (log \(\varepsilon=3.86\)); \(\nu^{\text{CHCl}_3} 3420, 1748, 1703, 1646, 1613\) and 1528 cm\(^{-1}\). The NMR spectrum (100 MHz, CDCl\(_3\)) of the synthetic antimycin A3 was very similar to that of an authentic sample\(^*\) of natural antimycin A, and especially, both the spectra were identical with respect to the chemical shifts and coupling constants of the dilactone ring protons and the ring methyl protons which may be closely related to the configuration and conformation in the ring structure\(^{**}\).
of the natural antimycin A. Molecular ion at m/e 520.2412 (calcd., 520.2421).
Anal. Found: C 59.72, H 7.15, N 5.25.
Calcd. for C_{26}H_{36}N_{4}O_{3}:
C 59.99, H 6.97, N 5.38.
On paper chromatography with a solvent system water - ethanol - acetone (7:2:1),^{8}
the synthetic specimen showed on the bioautogram (test organism, *Piricularia orizae*)
a single spot corresponding to that of the natural antimycin A₃ in the antimycin A
complex.
Minimal inhibitory concentrations (mcg/ml) of the synthetic specimen against test
fungi, as compared to those (in parenthesis) of natural antimycin A complex, were as
follows: *Candida albicans* 3147, 12.5 (12.5), *Piricularia orizae* 0.025 (0.025) by agar
dilution method with 1% glucose nutrient agar, 27°C, 24~70 hours.

We wish to thank Prof. Hiroshi Yonehara for his helpful discussions, Prof. Hamao Umezawa for
his helpful advice, Dr. Hiroshi Naganawa for the measurement of NMR spectra, and Dr. Masa
Hamada and Mr. Ichiro Takagi for the microbiological tests.

Mitsuhiko Kinoshita
Masao Wada
Shimpei Aburagi
Sumio Umezawa

Department of Applied Chemistry,
Keio University, Koganei-shi,
Tokyo, Japan

(Received August 2, 1971)

References

1) **Kinoshita, M.; M. Wada & S. Umezawa:** The total synthesis of a diastereomeric
2) a) **Strong, F. M.; J. P. Dickie, M. E. Loomans, E. E. van Tamelen & R. S. Dewey:**
82: 1513~1514, 1960
b) **van Tamelen, E. E.; J. P. Dickie, M. E. Loomans, R. S. Dewey & F. M. Strong:**
83: 1639~1646, 1961
c) **Endo, T. & H. Yonehara:** Chemical studies on blastmycin. III. Gas-liquid chro-
d) **Schilling, G.; D. Berti & D. Kluepfel:** Antimycin A components. II. Identification
and analysis of antimycin A fractions by pyrolysis-gas liquid chromatography. *J.
Antibiotics* 23: 81~90, 1970
3) **Yonehara, H. & S. Takeuchi:** Studies on the chemical structure of blastmycin. *J.
4) The minor diastereomer has the Rf-values close to those of the major isomer (2)
in TLC (silica gel) with several kinds of solvent system, however, it differs from 2
in the NMR spectral feature (in CDCl₃).
5) **Schröder, E.:** Über Peptidsynthesen. XV. Neue O-tert-Butyl-hydroxyaminäsäure Der-
ivate und ihre Verwendung zur Synthese von Glukagon-teilsequenzen. *Ann.* 670:
127~136, 1963
6) **Kinoshita, M. & S. Umezawa:** The total synthesis of dehexyl-deisovaleryloxy-anti-
7) **Uzu, K.; H. Katō, K. Kube & Y. Harada:** The chemical studies of antimycin A. I.
8) **Liu, Wen-Chih & F. M. Strong:** Separation and properties of antimycin A subcom-