TOTAL SYNTHESIS OF STREPTOMYCIN

Sir:

Streptomycin discovered by Waksman and coworkers1 in 1944 was the first useful Streptomyces antibiotic. Its structure was established2 by 1948 except for the glycosidic linkage between streptose and streptidine which was again shown3,4 to be \(\alpha\). However, the total synthesis of the molecule has not been achieved. We5 have recently prepared by total synthesis dihydrostreptomycin (DSM) which is produced by hydrogenation6,7 of streptomycin or by direct fermentation.8 In this paper, we wish to report the conversion of DSM to streptomycin, thereby completing the first rational synthesis of streptomycin.

When DSM (1) trihydrochloride was treated with equimolecular quantities of benzyl chloroformate and sodium carbonate in aqueous acetone with cooling, benzyloxycarbonylation selectively occurred at the \(N\)-methyl group of the \(L\)-glucosamine portion, giving 2'-N-benzyloxycarbonyldihydrostreptomycin (2) dihydrochloride (77\%); \([\alpha]_D^{20} = -71^\circ\) (c 1.5, H\(_2\)O); NMR (in \(D_2\)O): \(\delta 3.10\) (3H s, NCH\(_3\)), 7.57 (5H s, C\(_6\)H\(_5\)). Calcd. for \(C_{29}H_{47}N_7O_{14}.2HCl\cdot H_2O\): C 43.07, H 6.36, N 12.12, Cl 8.77. Found: C 43.20, H 6.20, N 11.93, Cl 8.79.

Treatment of 2 with excess 2,2-dimethoxypropane in the presence of a trace amount of p-toluenesulfonic acid gave a mixture of per-O-isopropylidened products. However, on treatment with 20\% acetic acid in methanol at 50\(^\circ\)C for 4.5 hours, the mono-isopropylidened derivative (3) was obtained; 49\%; \([\alpha]_D^{20} = 73^\circ\) (c 1, H\(_2\)O); NMR (in \(D_2\)O): \(\delta 1.25\) (3H d, CH\(_3\)), 1.27 and 1.37 (each 3H s, isopropylidene), 3.08 (3H s, NCH\(_3\)), 7.55 (5H s, C\(_6\)H\(_5\)). Calcd. for \(C_{32}H_{51}N_7O_{14}.2HCl\cdot H_2O\): C 44.75, H 6.46, N 11.42, Cl 8.26. Found: C 44.93, H 6.18, N 11.10, Cl 8.06. It should be noted that the isopropylidene group in the dihydrostreptose portion is the most stable.

Acetylation of 3 with acetic anhydride in the presence of a catalytic amount of p-toluenesulfonic acid at 50\(^\circ\)C for 70 hours gave the hexaacetyl derivative (4); 92\%; \([\alpha]_D^{20} = -60^\circ\) (c 1.4, acetone); NMR (in CDCl\(_3\)): \(\delta 1.85\) 2.2 (18H unresolved, m, Ac). Calcd. for \(C_{44}H_{63}N_7O_{20}.2HCl\): C 48.80, H 6.05, N 9.05, Cl 6.55. Found: C 48.66, H 6.05, N 8.76, Cl 6.50.

Selective hydrolysis of 4 with 75\% aqueous acetic acid at 55\(^\circ\)C for 30 hours led to the compound (5), which has free primary and tertiary hydroxyl groups in the dihydrostreptose portion, 86\%; \([\alpha]_D^{20} = -66^\circ\) (c 1.2, acetone); Rf 0.5 (TLC with Avicel, pyridine-ethyl acetate-ether-20\% acetic acid (2:2:3:1), visualized by diacetyl). Calcd. for \(C_{41}H_{59}N_7O_{20}.2HCl\): C 47.23, H 5.90, N 9.40, Cl 6.80. Found: C 46.90, H 5.80, N 9.11, Cl 6.99. The structure (5) was confirmed by the NMR spectrum (in pyridine-\(d_5\)-\(D_2\)O): \(\delta 1.55\) (3H d, CH\(_3\)), 2.0~2.4 (18H m, Ac), 3.37 (3H s,
Compound 5 was then converted into the aldehyde derivative (6) by PFITZNER-MOFFATT oxidation with dimethyl sulfoxide, dicyclohexylcarbodiimide, trifluoroacetic acid, and pyridine at room temperature for 1.5 hours. The desired compound from the reaction product was difficult to isolate, so the crude product was deacetylated with methanolic ammonia and chromatographed on Dowex 1 ×2 (OH form) with water to afford the 2''-N-benzyloxycarbonyl streptomycin (6) (18 %); dihydrochloride dihydrate: [α]D -70° (c 1, H2O); NMR (in D2O): δ 1.27 (3H d, CCH3), 3.10 (3H s, NCH3), 7.60 (5H s, C6H5). Calcd. for C38H45N7O14 • 2HCl • 2H2O: C 42.23, H 6.23, N 11.89, Cl 8.60. Found: C 42.21, H 6.09, N 11.63, Cl 8.73. Oxidation with ruthenium tetroxide was unsuccessful.

At this point, we were able to establish the identity with natural material which was prepared from natural streptomycin by benzy-
loxycarbonylation. The specific rotation, IR and NMR spectra and chromatographic behavior of the synthetic and natural specimens were identical.

Finally, catalytic hydrogenolysis of the synthetic 6 with palladium black in aqueous solution acidified with acetic acid produced streptomycin. It should be noted that, in this case, pretreatment of the aqueous solution of 6 with a small amount of Raney nickel improved the yield of streptomycin. By chromatography on Dowex 1×2 (Cl form), we readily obtained pure streptomycin (75%); trihydrochloride: [α]$_D^{25}$ = −82° (c 1, H$_2$O) (lit9) −86.7°, (c 1, H$_2$O)). The synthetic streptomycin trihydrochloride was identical with the natural specimen with respect to the IR and NMR spectra, thin-layer and paper chromatographic behavior, and antibacterial spectra. In the NMR spectra (Fig. 1), we can observe the proton singlet at δ 5.15 which is due to the unusual C-3 formyl group and considered to be a hydrated form.10 The antibacterial spectra (Table 1) are essentially identical, showing the same characteristic features of activity against both sensitive and resistant organisms.

Acknowledgement

The authors are grateful to Prof. Hamao Umezawa of the Institute of Microbial Chemistry for his important ideas and encouragement.

SUMIO UMEZAWA
YOSHIKAZU TAKAHASHI
TAKAYUKI USUI
TSUTOMU Tsuchiya

Department of Applied Chemistry,
Faculty of Engineering,
Keio University,
Hiyoshi, Yokohama, Japan
(Received October 17, 1974)

References