L-THREO-β-HYDROXYASPARTIC ACID
AS AN ANTIBIOTIC AMINO ACID

TADAYUKI ISHIYAMA, TAKAKI FURUTA,
MAKOTO TAKAI and YOICHIRO OKIMOTO
Department of Agriculture, Tamagawa
University, Tamagawa-gakuen,
Machida, 194 Japan
SHOJIRo AIZAWA,* AKIRA SHIMAZU
and HIROSHI YONEHARA
Institute of Applied Microbiology,
The University of Tokyo, Bunkyo-ku,
Tokyo, 113 Japan
(Received for publication June 16, 1975)

In the course of our screening for new
antibiotics, Arthrinium phaeospermum T-53 and
Streptomyces sp. 7540-MC1 were found to
produce an antibiotic substance. This paper
describes the production, isolation, chemical
and biological properties of the antibiotic.

Organisms and Fermentation
A strain of A. phaeospermum1,2) T-53 was
isolated from a fruiting body of Psathyrella
obtusata (mushroom) and maintained on agar
slants containing glucose 2 %, peptone 0.2 %,
MgSO4 0.05 %, KH2PO4 0.06 %, K2HPO4 0.1 %
and agar 1.5 %. The fungus was cultured on
a reciprocal shaker at 28°C in a vegetative
medium containing the following ingredients;
soybean meal 1.5 %, dry yeast 0.2 soluble
starch 2.5 %, CaCO3 0.4 % and NaCl 0.5 %.
Two ml of 2 day old culture was transferred
into 100 ml of the same medium in a 500-m1
Erlenmeyer flask and was cultivated for 3 days
on a rotary shaker at 28°C.
Bacillus subtilis was used as a test organism
in the medium of peptone 0.5 % and agar
1.2 %, pH 7.0. Streptomyces sp. 7540-MC1
was isolated from a soil sample collected at
Nagano Prefecture, Japan and was cultivated
for 3 days in the same manner as described
above for A. phaeospermum.

Isolation Procedure
The broth filtrate was passed through col-
umns of activated carbon and Amberlite
IRC-50 (H+ type), successively. The effluent
was charged onto an anion-exchange column
(Chromatography 51×8 or IRA 410 (OH− type)) and the
column was washed with water and developed
with 0.04 N HCl. The active eluate was
concentrated in vacuo to a small volume and
ethanol was added to yield crude precipitates.
These were further purified through a column
of Amberlite XAD-2 using water as a solvent
to give active crystals. As an alternate of this
step, the IRC-50 effluent was adsorbed on
Amberlite IR-120 (H+ type) and eluted with
0.3 N NH3·H2O. The crystals thus obtained
were recrystallized from water-ethanol.

Physicochemical Properties
The active component was colorless crystals
of mp. ~210°C (dec.). It was soluble in hot
water and conc. HCl, slightly soluble in water
and almost insoluble in most organic solvents.
It gave a positive color reaction with ninhydrin
reagent but negative with FeCl3, 2,4-dinitro-
phenyl hydrazine and phenol red reagents, and
negative Molisch, Fehling, Biuret and Sa-
Kaguchi reactions. The Rf values on paper-
chromatograms were as follows; BuOH - AcOH-
H2O (2 : 2 : 1) 0.41, BuOH - AcOH - H2O (2:
1 : 1) 0.24 and BuOH - EtOH - H2O (5 : 2 : 3)
0.24.

In the UV region it showed no characteristic
absorption and in the NMR spectrum (100 MC,
DCl) it exhibited two methine protons at δ 4.71
and 5.08 with small coupling constant (~ 2 Hz).
The IR spectrum is shown in Fig. 1. Elemental
analysis suggests C4H7O5N for its empirical
formula.

Calcd. for C4H7O5N: C 32.22, H 4.73,
O 53.66, N 9.40
(MW 154)
Found: C 32.52, H 4.65,
O 53.68, N 9.01
(MW 149.1, Titration)

Methylation
Methylation of this material in boiling 3 n
HCl-MeOH for 3 hours gave several products
on a paper chromatogram (BuOH - AcOH - H2O,
2 : 1 : 1). Preparative precipitate and repeated
crystallizations from hot water gave a mono-
methyl ester as a main product of C5H9O5N.
mp. 143~145°C, IR 1725, 1765 cm−1, NMR
(DCl); 3.90 (3H, s), 4.72 (1H, d) and 5.05
(1H, d) ppm.

Identification with L-threo-β-Hydroxyaspartic
acid
These physicochemical properties suggest

* Present address: Kaken Chemical Co., Kita-ku, Tokyo, 114 Japan.
Fig. 1. IR Spectra of \(\beta \)-hydroxyaspartic acids (KBr)

A: \(\text{l-erythro-} \beta \)-Hydroxy-aspartic acid
B: \(\text{dl-threo-} \beta \)-Hydroxy-aspartic acid
C: \(\text{l-threo-} \beta \)-Hydroxy-aspartic acid
D: The antibiotic substance

Table 1. Antimicrobial spectrum of \(\text{l-threo-} \beta \)-hydroxyaspartic acid

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Concentration (mcg/ml)</th>
<th>Inhibition zone (Diameter, mm)*</th>
<th>Medium**</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Assays were performed with 8 mm filter paper discs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** A Peptone 0.5%, agar 1.2%, pH 7.0</td>
<td>B Glucose bouillon, pH 7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Mukow Watanabe pH 7.0</td>
<td>D Glycerin Czapek, pH 7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Sabouraud, pH 7.0</td>
<td>F Yeast ext. 0.2%, starch 1.2%, agar 1.2%, pH 7.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(\beta\)-hydroxyaspartic acid for the antibiotic substance. The comparison of this material with \(\text{erythro}\) and \(\text{threo}\)-\(\beta\)-hydroxyaspartic acid* in IR spectra (Fig. 1) revealed its identity with the \(\text{threo}\) isomer.3) On high voltage paper electrophoresis (3,500 V, 20 min.) using a buffer of formic acid - acetic acid - water (25 : 75 : 900, v/v), its mobility (2.9 cm), was the same as that of the \(\text{threo}\) isomer (2.9 cm), but different from that of the \(\text{erythro}\) isomer (4.1 cm).

Optical rotations of this antibiotic and \(\text{L-threo}\)-hydroxyaspartic acid were both \([\alpha]_{D}^{256}=+46^\circ\) (c 0.5, 1 N HCl), thus, the antibiotic was identified as \(\text{L-threo}\)-\(\beta\)-hydroxyaspartic acid. It is worth to note that an analogous amino acid \(\text{L-threo}\)-\(\alpha\)-amino-\(\beta\),\(\gamma\)-dihydroxybutyric acid has been isolated by Westley et al.7) from the fermentation broth of an unidentified \(\text{Sreptomyces}\).

Biological Properties

This amino acid has been isolated from several organisms,4,5) but its antimicrobial activity is not described as yet. It shows inhibitory activity against \textit{Bacillus subtilis}, \textit{Xanthomonas oryzae}, \textit{Mycobacterium phlei} and \textit{Botrytis cinerea} as summarized in Table 1. It did not show any toxicity at 250 mg/kg (i.v., mice). So far as tested, the biological activity of this antibiotic was not reversed by the addition of known amino acid such serine, threonine, varine and aspartic acid.

Summary

\(\text{L-threo}\)-\(\beta\)-Hydroxyaspartic acid was isolated from cultured broths of \textit{Arthrinium phaeospermum} sp. T-53 and \textit{Streptomyces} sp. 7540-MC1. The amino acid exhibited broad antimicrobial activity.

Acknowledgement

Authors are indebted to Dr. T. Takita, Institute of Microbial Chemistry, for his valuable information and advice. We are also grateful to Prof. T. Shiba, Faculty of Science, Osaka University, for his generous supply of authentic \(\text{L-threo}\) and \(\text{erythro}\)-\(\beta\)-hydroxyaspartic acids.

References

* Authentic \(\text{l-erythro}\) and \(\text{threo}\)-\(\beta\)-hydroxyaspartic acids were kindly presented by Prof. T. Shiba.