1,3-DIPHENETHYLUREA FROM *STREPTOMYCES* SP. NO. AM-2498.

YUZURU IWAI, ATSUSHI HIRANO, JUICHI AWAYA, SHIGETAKA MATSUO and SATOSHI OMURA
Kitasato University and The Kitasato Institute
Tokyo, Japan

(Received for publication January 13, 1978)

In the course of screening for new alkaloids from microorganisms, we found 1,3-diphenethylurea\(^1\) as a metabolite in the culture broth of the soil isolate, *Streptomyces* sp. strain No. AM-2498. The sporophore of strain No. AM-2498 was spiral, representative of the section *Spirales* of PRIDHAM et al.\(^1\) and the spore was oval with a spiny surface. The aerial mass color was white and melanoid pigment was not produced. The cell wall preparation from strain No. AM-2498 contained LL-diaminopimelic acid.

Strain No. AM-2498 was inoculated into 100 ml of medium in a 500-ml SAKAGUCHI flask and incubated at 27°C. A 48-hour culture was transferred into 20 liters of medium in a 30-liter jar fermentor and the fermentation carried out at 27°C for 30 hours. The composition of the seed medium was 2% glucose, 0.5% peptone, 0.5% meat extract, 0.3% dried yeast, 0.5% NaCl and 0.3% CaCO\(_3\) (pH 7 before sterilization) and the production medium was 1% glucose, 2% starch, 0.5% yeast extract, 0.5% peptone and 0.4% CaCO\(_3\) (pH 7 before sterilization). Adecanol LG-109 (Asahi Electro-Chemical Co., Ltd.) was used as antifoam agent. Metabolite AM-2498 was detected by DRAGENDORFF reaction on silica gel TLC, CHC\(_3\)-CH\(_3\)OH (10: 1, v/v) (RF = 0.68).

The culture broth was extracted with 4 liters benzene and the solvent layer was dried over anhydrous sodium sulfate and concentrated *in vacuo* to dryness to yield 1.84 g of a brown paste. The paste was treated twice with 100 ml of benzene to give 420 mg of a pale green powder. The powder was recrystallized from methyl alcohol to afford colorless needles (250 mg) of metabolite AM-2498.

Metabolite AM-2498 showed the following physicochemical properties: Melting point 138–141°C, UV \(\lambda_{\text{max}}^{\text{MeOH}}\) nm (\(\varepsilon\)) 248 (308), 251 (411), 253 (446), 256 (535), 259 (549), 262 (543), 265 (419), 269 (351). IR \(\nu_{\text{max}}^{\text{KBr}}\) cm\(^{-1}\) 3320, 1875, 1810, 1740, 1610, 1570, 745, 695, PMR (100 MHz, CDCl\(_3\)) \(\delta\) 2.70 (4H, sharp triplet, \(-\text{CH}_2-\times 2\)), 3.28 (4H, sharp quartet, \(-\text{CH}_2-NH-\times 2\)), 4.45 (2H, broad singlet, \(-\text{NH}-\times 2\)), 7.12 (10H, sharp doublet, aromatic ring \(\times 2\)). The molecular formula C\(_{17}\)H\(_{20}\)N\(_2\)O was determined on the basis of elemental analysis (C 76.06, H 7.51, N 10.33%) and its mass spectrum (\(M^+\), \(m/e\) 268). These spectroscopic properties and proton noise-decoupled \(^{13}\)C-NMR spectrum, are consistent with 1,3-diphenethylurea\(^1\) as the structure of metabolite AM-2498. The \(^{13}\)C-NMR spectrum and signal assignment of metabolite AM-2498 are shown in Fig. 1. The signals in the spectrum were assigned on the basis of their chemical shifts\(^5\), off-resonance decoupling and the comparison with those of dibenzylmethylamine, urea, dimethylurea and their related compounds\(^4,5\).

In a preliminary test the metabolite was found to possess weak antidepressant activity. No acute toxicity of the metabolite was observed in mice after 100 mg/kg intraperitoneal injection.
Acknowledgements

The authors wish to thank Mrs. Y. TAKAHASHI, Messrs K. MATSUMOTO, Y. SANO and M. FURUYA for their assistance.

References