FORMATION OF 8-AZAGUANINE FROM GUANINE BY
STREPTOMYCES ALBUS

KIYOSHI HIRASAWA and KIYOSHI ISONO
The Institute of Physical and Chemical Research,
Wako-shi, Saitama 351, Japan

(Received for publication March 2, 1978)

For many years, 8-azaguanine (1) has received much attention because of its remarkable biological activity. In 1961, this compound was found to be a metabolite of Streptomyces albus var. pathocidicus and named pathocidin. The same strain also produces a cytosine nucleoside antibiotic, blasticidin S. Because it is an example of an unusual nucleobase occurring in nature, we became interested in studying its biosynthesis.

In vivo feeding experiment was performed with growing cells of S. albus in a medium containing 2% glucose, 1% starch, 2.5% soybean meal, 0.1% meat extract, 0.5% dry yeast, 0.2% NaCl, and 0.005% K2HPO4. After 45-hour fermentation in shake flasks, 14C-labeled compounds were added to the culture. After 45-hour additional incubation, 8-azaguanine was isolated from the culture filtrate by a procedure modified from that of originally described utilizing Amberlite IR-45.

Complete separation from guanine was achieved by preparative thin-layer chromatography on cellulose (Merck cellulose F) with the solvent: n-propanol - 1 N NH4OH (7:3) and paper chromatography with water. 8-Azaguanine was finally recrystallized from water. Results of the incorporation of 14C-labeled compounds are summarized in Table 1. [2-14C] Guanine was very efficiently incorporated (Exp. 1). In contrast, [8-14C] guanine was not incorporated (Exp. 1). [2-14C] Adenine was incorporated with an efficiency comparable to [2-14C] guanine (Exp. 2). From these results, it appears that 8-azaguanine is formed from guanine by the replacement of C-8 of guanine with nitrogen.

GTP-formylhydrolase which catalyzes the hydrolytic cleavage of C-8 of GTP, is regarded as a key enzyme for the biosynthesis of pterins, lumazines, flavins, pyrrolopyrimidine antibiotics etc. Similar hydrolytic cleavage of guanine may be probable in the biosynthesis of 8-azaguanine. However, addition of 6-hydroxy-2,4,5-triaminopyrimidine (2, R=H), a possible intermediate, at a concentration of 5 x 10−3 M resulted neither in decrease of the specific activity of 8-azaguanine nor in increased yield (Exp. 3). This may suggest that the biosynthesis of 8-azaguanine from guanine proceeds at the nucleoside or nucleotide level, but not at the base.

Scheme 1. Possible pathway for the biosynthesis of 8-azaguanine

Table 1. Incorporation of 14C-labeled compounds into 8-azaguanine

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Compound added</th>
<th>Sp Act. (Ci/mol)</th>
<th>Sp Act. (mCi/mol)</th>
<th>Dilution*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[2-14C] Guanine</td>
<td>1.88</td>
<td>23.3</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>[8-14C] Guanine</td>
<td>1.11</td>
<td>0.09</td>
<td>12,000</td>
</tr>
<tr>
<td>2</td>
<td>[2-14C] Adenine</td>
<td>1.60</td>
<td>13.4</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>[2-14C] Guanine</td>
<td>20.0</td>
<td>13.1</td>
<td>1,530</td>
</tr>
<tr>
<td></td>
<td>[2-14C] Guanine plus HTAP**</td>
<td>20.0</td>
<td>16.5</td>
<td>1,210</td>
</tr>
</tbody>
</table>

* Sp Act. of compound added = Sp Act. of 8-azaguanine isolated
** 6-Hydroxy-2,5,5-triaminopyrimidine was added (5 x 10−3 M) 15 minutes prior to addition of the labeled compound.
level. Determination of 8-formylhydrolase activity in the cell-free extract of *S. albus* using [8-\(^{14}C\)] guanine, -guanosine, -GMP, or -GTP as substrate has so far been unsuccessful.

References

