STUDIES ON INHIBITION OF ADENOSINE DEAMINASE BY ISOCOFORMYCIN IN VITRO AND IN VIVO

MASAMI SHIMAZAKI, YOSHIKI KUMADA, TOMIO TAKEUCHI, HAMAO UMEZAWA
Institute of Microbial Chemistry,
Kamiosaki, Shinagawa-ku, Tokyo 141, Japan
and KIYOSHI WATANABE
Biochemical Research Laboratories, Kanegafuchi Chemical Industry Co., Ltd.,
Takasago, Hyogo 676, Japan
(Received for publication March 19, 1979)

Isocoformycin is a structural isomer of coformycin which has been demonstrated to be a potent inhibitor of adenosine deaminase. Isocoformycin showed a weaker inhibition of this enzyme than coformycin; the binding of coformycin to enzyme was irreversible, but isocoformycin inhibition was competitive with substrate. The K_i value of isocoformycin was $4.5 \times 10^{-8} M$. Following intraperitoneal injection of isocoformycin in mice, the adenosine deaminase activity of homogenates of several organs was determined and the following E_{50} values (50% inhibition doses) were observed: 29 mg/kg for thymus, 13 mg/kg for spleen, 80 mg/kg for liver and 20 mg/kg for kidney. The inhibition of adenosine deaminase in rabbit blood in vitro was also tested in comparison with coformycin.

UMEZAWA et al.1,2 reported that coformycin is a strong inhibitor of adenosine deaminase (EC 3.5.4.4) and exhibits strong synergistic effects with formycin A and arabinosyl adenine in inhibition of the growth of bacteria, EHRlich carcinoma cells and YOSHIDA rat sarcoma cells. Moreover, coformycin (Fig. 1) had a unique structure3 as an inhibitor of adenosine deaminase. 2'-Deoxycoformycin4 also exhibits a strong inhibition of the enzyme and strong synergistic effects with adenosine analogs5,6. These inhibitors bind tightly to adenosine deaminase7,8. The effect or toxicity of such strongly bound inhibitors may persist for longer periods than that of inhibitors which inhibit the enzyme competitively. We have described the synthesis of isocoformycin (3-β-D-ribofuranosyl-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-7-ol, Fig. 1)9,10. This compound was found to be a competitive inhibitor of adenosine deaminase.

In this paper, studies on the inhibition of adenosine deaminase by isocoformycin in vitro and in vivo are reported.

Materials and Methods

Formycin A and coformycin were supplied by Meiji Seika Co. Adenosine was obtained from a commercial source and purified by recrystallization from water. 9-β-D-Arabinofuranosyladenine (ara-A) was obtained from Drug Research and Development, National Cancer Institute, Bethesda, U.S.A. Adenosine deaminase (Type I, 230 units/mg protein) of calf intestinal mucosa was purchased from

Fig. 1. The structures of isocoformycin and coformycin.
Sigma Chemical Co. 9-β-D-Arabinofuranosylhypoxanthine (ara-H) was synthesized from ara-A by oxidation with sodium nitrite.

Kinetic Studies

ACKERMANN-POTTER analysis was carried out by the method described by CHA et al. Varied amounts of adenosine deaminase were incubated in a total volume of 1.9 ml of 50 mM sodium phosphate buffer, pH 7.5, containing isoformycin (or coformycin) at varied concentrations. After incubation for 50 minutes at room temperature, 0.1 ml of 2 mM adenosine was added and the reaction was followed by measuring the decrease in absorbancy at 265 nm at room temperature. Alternatively, the enzyme reaction was carried out without preincubation with isoformycin and the results examined by a LINEWEAVER-BURK plot. When ara-A or formycin A was used as the substrate, the decrease in the optical density at 259 nm or 295 nm, respectively was recorded.

Inhibition of Adenosine Deaminase by Isoformycin in vivo

Isoformycin dissolved in 0.9% NaCl solution was injected intraperitoneally to ddY mice at 100 mg/kg, 25 mg/kg and 6.25 mg/kg. For each dose, 3 mice were used. One hour after the injection, mice were sacrificed and thymus, spleen, liver and kidney were frozen immediately and weighed. They were homogenized in 2 volumes of 50 mM cold Tris-HCl buffer (pH 7.5) with a motor-driven glass pestle. Fifty μl of each homogenate were added to 450 μl of a reaction mixture containing 50 μl of 0.5 M Tris-HCl buffer (pH 7.5) and 50 μl of 10 mM [3H]-ara-A (0.3 μci/assay) at 0°C. The mixture was incubated for 5, 10, 20 and 30 minutes at 37°C. The reaction was stopped by heating in a boiling water bath for 3 minutes and 100 μl aliquots were subjected to high-voltage paper electrophoresis (3,500 V, 20 minutes) using Toyo Filter Paper No. 51. By this method, a complete separation of ara-H from ara-A was obtained: Rm of ara-A, 0.70-0.73; Rm of ara-H, 0.20-0.23; Rm is the mobility of a sample relative to alanine as standard. The area of ara-H was cut out and determined by liquid scintillation counting. From the results, the doses which caused the reduction of adenosine deaminase activities of thymus, spleen, liver and kidney to 50% of the control were obtained.

Inhibition of Adenosine Deaminase in Rabbit Blood by Isoformycin or Coformycin in vitro

One ml of an aqueous solution of isoformycin (or coformycin) at varied concentrations was added to 1 ml of formycin A solution (326 μg/ml) or 1 ml of ara-A solution (336 μg/ml). The reaction was started by addition of 1.0 ml of rabbit blood (10 ml of rabbit blood was taken into a syringe containing 100 units heparin) and the mixture incubated at 37°C for 10 minutes. The reaction was stopped by addition of 3.0 ml of methanol and the precipitate removed by centrifugation; 6 μl of the supernatant were subjected to high pressure liquid chromatography (JASCO FLC-A10): solid phase, JASCO CV-01-500 (2.3 mm x 500 mm); mobile phase, 0.01 M KH₂PO₄ of pH 6.0 for the analysis of formycin or at pH 4.7 for the analysis of ara-A; flow rate, 0.5 ml/min; column pressure, 100 kg/cm²; column temperature, ambient; detector, UVIDEC-100 (wave length 280 nm); chart speed, 0.5 cm/min.

Result

Kinetic Studies

Coformycin has been reported by CHA et al. to be a tight-binding inhibitor of adenosine deaminase. The binding of isoformycin was examined by ACKERMANN-POTTER analysis. As shown in Fig. 2, coformycin was a stoichiometric inhibitor, but isoformycin was not a tight-binding inhibitor. The inhibition by isoformycin was competitive with the substrate adenosine, as illustrated in Fig. 3. The Ki value for isoformycin was obtained by a LINEWEAVER-BURK plot of the results. Table 1 indicates the Ki values of isoformycin and coformycin when adenosine, ara-A or formycin A were used as the substrate.

Inhibition of Adenosine Deaminase by Isoformycin In vivo

Fig. 4 indicates the adenosine deaminase activity of thymus, spleen, liver and kidney of mice...
injected with isocoformycin relative to the control. From the curves in this figure, doses which reduced the activity of thymus, spleen, liver and kidney to 50% of the control were estimated to be 29 mg/kg, 13 mg/kg, 80 mg/kg and 20 mg/kg, respectively.

Inhibition of Adenosine Deaminase in Rabbit Blood by Isoformycin and Coformycin In vitro

Inhibition of deamination of formycin A and ara-A in blood by isocoformycin and coformycin in vitro was examined. The results are shown in Fig. 5. When the ID_{50} value (50% inhibition con-
centration) of isocoformycin are compared with those of coformycin, the former is about 1,000~2,000 times weaker than the latter indicated as follows: 4 μg/ml or 1.5 μg/ml of isocoformycin required for 50% inhibition of the deamination of formycin A or ara-A respectively, compared to 0.0019 μg/ml or 0.0013 μg/ml of coformycin.

Discussion

As shown in Fig. 6, isocoformycin can have two stereoisomers due to changes in the stereochemistry of the hydroxyl group-binding carbon atom in the seven membered ring. It is thought that one of these epimers can be converted to the other through the intermediate ring-opened aldehyde form and both epimers exist in the aqueous solution. Coformycin does not possess these epimeric structures and is structurally more related to adenosine, ara-A and formycin than isocoformycin. These structure relationships imply that coformycin inhibits adenosine deaminase much more strongly than isocoformycin. As shown by the extremely small Ki value the binding of coformycin to the enzyme is apparently irreversible.

Although the activity of isocoformycin is much weaker than that of coformycin, the Ki value for adenosine deaminase was $4.5 \sim 10.0 \times 10^{-4}$ M and it is still a strong inhibitor of the enzyme. A small difference in Ki values was observed depending on substrates such as formycin, adenosine or ara-A. The Ki value should be independent of substrate and the small differences described previously may be due to experimental error.

Both coformycin and isocoformycin exhibit inhibition of adenosine deaminase in vivo. The administration of 10~100 mg/kg decreased the deamination of ara-A in various organs to 50% of the control. As will be reported subsequently, isocoformycin has a much lower toxicity than coformycin.

References

5) PLUNKETT, W. & S. S. COHEN: Two approaches that increase the activity of analogs of adenosine nucleoside in animal cells. Cancer Res. 35: 1547~1554, 1975

