SYNTHESIS OF NOVEL AMINOGLYCOSIDE ANTIBIOTICS BY PERIODIC ACID OXIDATION OF NEAMINE

Sir:

The antibiotics GIAl1) and sorbistin2) exhibit broad-spectrum activity against resistant bacteria carrying R factor and resistant Pseudomonas aeruginosa. To obtain analogs of these compounds we have synthesized two aminoglycoside antibiotics with non-cyclitol aglycones by selective periodic acid oxidation of neamine.

The initial step of the synthesis, N-t-butoxycarbonylation3), was successfully effected with O-t-butyl-S-4,6-dimethyl-2-pyrimidinyl-thiocarbonate (Boc-S)4). This reagent (162.6 g) was added to a solution of neamine (30 g) in aqueous dioxane (1:2, 240 ml) and the solution was stirred at 60°C for 3 hours. Then the hot solution was poured into water (2 liters). The resulting precipitate was filtered and dried to give crude tetra-N-t-butoxycarbonylneamine (1, 49.75 g, 74%), which was purified by column chromatography on silica gel with methanol-chloroform (1:30), [α]D +47.6° (c 1.0, DMF), [Calcd. for C22H34N3O12: C 51.88, H 8.16, N 7.56; Found: C 51.75, H 8.02, N 7.09 %]. 1 (5.00 g) was treated with 1,1-dimethoxycyclohexane (6.75 ml) in DMF (33.8 ml), in the presence of anhydrous p-toluenesulfonic acid (1.08 g) at 55°C under reduced pressure5). After 30 minutes, the resulting solution contained three compounds as shown by tlc with methanol-chloroform (1:25): 3',4';5,6-di-O-cyclohexylidene derivative (2', Rf 0.64), 5,6-O-monocyclohexylidene derivative (2, Rf 0.21), and the starting material (1, Rf 0.05). To the solution, hydroxylamine hydrochloride (125 mg) in aqueous DMF (1:1, 2 ml) was added and the mixture held at 40°C for 20 minutes. With this treatment, 2 became the major constituent and 2' disappeared. After neutralization with triethylamine (2.0 ml), the solution was evaporated to a syrup and water was added. The resulting precipitate was filtered, washed with water and dried (4.43 g). Column chromatography on silica gel (250 g) with methanol-chloroform (1:150) afforded a pale yellow powder (2) (2.77 g, 49%), [α]D +0.2° (c 0.78, CHCl3), [Calcd. C26H48N4O14•H2O: C 55.59, H 8.35, N 6.82; Found: C 55.65, H 8.07, N 6.61 %]. A mixture of 2 (3.00 g) and benzoyl chloride (3.94 ml) in dry pyridine (46.5 ml) was stirred at 50°C for 1 hour. After addition of water (2.90 ml), the solution was concentrated to approximately 10 ml and to the concentrate chloroform (200 ml) was added. After stirring, the organic layer was washed successively with sodium hydrogen carbonate solution and water, then evaporated to yield the 3',4'-di-O-benzoyl-5,6-O-mono-cyclohexyldiene derivative (3, 3.79 g, quantitative). [α]D +8.5° (c 0.30, CHCl3), [Calcd. for C40H64N4O16: C 61.77, H 7.38, N 5.54; Found: C 62.25, H 7.15, N 5.06 %]. A solution of 3 (3.78 g) in 70% aqueous acetic acid (3.2 ml) was heated at 60°C for 1 hour. The solution showed on tlc with methanol-chloroform (1:25) only one product (Rf 0.21, cf. 3, Rf 0.70). The solution was evaporated with toluene to give a syrup (2.69 g). Column chromatography over silica gel (380 g) with methanol-chloroform (1:120) afforded a white powder of the decyclohexyldiened derivative (4, 2.67 g, 63.4%), [α]D +8.5° (c 0.30, CHCl3), [Calcd. for C55H88N4O18: C 61.77, H 7.38, N 5.54; Found: C 62.25, H 7.15, N 5.06 %]. Compound 4 (2.67 g) was dissolved in 95% trifluoroacetic acid (25 ml) and the solution was kept at room temperature overnight6,8). After neutralization9) with sodium hydrogen carbonate, the mixture was filtered and the filtrate was evaporated to a syrup. The residue obtained was triturated with several portions of ethanol (40 ml). To the solution was added sodium borohydride (1.05 g), and the mixture was stirred at room temperature overnight. After neutralization with 1 N hydrochloric acid (10 ml), the solution was evaporated to give a syrup, which was dissolved in chloroform. The solution was washed with water, dried over sodium sulfate and evaporated to give syrupy tetra-N-t-butoxycarbonyl-2,4-diamino-2,3,4-trideoxy-5-O-(2,6-diamino-2,6-deoxy-α-D-glucopyranosyl)-D-glucitol (5, 2.18 g, 63.4%), [α]D +8.6° (c 0.47, CHCl3), [Calcd. for C46H78N4O16•H2O: C 58.67, H 8.41, N 5.97 %]. A solution of 5 (2.08 g) in 95% trifluoroacetic acid (25 ml) was kept at room temperature for 30 minutes. The solvent was removed by evaporation and the residue was dissolved in water (40 ml). The aqueous solution was neutralized with 2 N sodium
hydroxide and passed through a column of Amberlite CG-50 resin (NH₄⁺ form, 60 ml). The column was washed with 400 ml of water and then eluted stepwise with 450 ml of 0.1 N NH₄OH and 400 ml of 0.3 N NH₄OH. The eluates showing a major spot at Rf 0.37 on tlc (CHCl₃ - MeOH - conc. NH₄OH in 1:4:2:1, ninhydrin, neamine Rf 0.43) were combined, evaporated in vacuo, and lyophilized to give a colorless solid, 2,4-diamino-2,3,4-trideoxy-5-O-(2,6-diamino-2,6-deoxy-α-D-glucopyranosyl)-D-glucitol (6, 684 mg, 73.4%), [α] D +127.4° (c 1.36, H₂O). The mass spectrum of 6 exhibited a peak at m/e 325 attributable to the (M+1) ion. NMR (D₂O): δ 5.14 ppm (1H, d, J=4 Hz, H-I'), 1.61-1.94 (2H, m, H-2). [Calcd. for C₁₂H₂₈N₄O₈·H₂O·H₂O·2H₂CO₃: C 40.21, H 8.37, N 15.00; Found: C 40.58, H 8.17, N 15.20%].

Compound 2 was treated with periodate as described above to give a tetra-N-t-butoxycarbonyl derivative consisting of 2-deoxystreptamine and a 2,6-diamino-2,6-dideoxy-D-glucose (2,6-AG) moiety which had been cleaved between C-3 and C-4, (7, 96.9%), [α]D +7.2°(c 1.0, CH₃OH). [Calcd. for C₃₈H₇₈N₁₄O₁₄: C 56.41, H 8.51, N 6.96; Found: C 56.41, H 8.33, N 6.81%]. Compound 7 was treated as described above for 5 to give the deprotected 2-deoxystreptamine derivative (8, 21.6%). The eluates showing a major spot at Rf 0.21 on tlc (n-BuOH - EtOH - CHCl₃ - conc. NH₄OH in 4:2:5:2:5, ninhydrin, neamine Rf 0.17) were combined. [α]D +17.3° (c 0.72, H₂O). Mass (M+1) 325; NMR (D₂O): δ 5.51 ppm (1H, d, J=4 Hz, H-I'), 2.56 (1H, d-t, J=12.0 Hz, H-2b), 1.98 (1H, q, J=12.0 Hz, H-2a). [Calcd. for C₁₃H₂₃N₃O₇·½H₂O: C 43.82, H 8.47, N 16.79%].
The antibacterial spectrum is shown in Table 1. The synthetic products are weakly bioactive, but may be useful as starting materials for the synthesis of improved antibiotics.

Acknowledgements

The authors would like to thank Drs. T. Niida and S. Seki, for their advice and encouragement in the performance of this work. Thanks are also due to Miss Y. Ohmori for carrying out the elemental analysis, to Mrs. H. Ogino for NMR spectra, and to the members of the laboratories who contributed to the in vitro studies.

SUsumu TOHMA*
TOSHIO YONETA
SHUNZO FUKATSU
Central Research Laboratories,
Meiji Seika Kaisha, Ltd.,
Moroooka, Kohoku-ku,
Yokohama 222, Japan

* Present address: Ashigara plant of Meiji Seika Kaisha, Ltd., Kayama, Odawara 250-01, Japan

(Received January 24, 1980)

References

1) Ponpipom, M. M.; R. L. Bugianesi & T.-Y. Shen: Chemical modification of 1,4-diamino-1,4-dideoxy-3-O-(4-deoxy-4-propionamido-a-D-glucopyranosyl)-d-glucitol. J. Med. Chem. 21: 221~225, 1978


5) Jikihara, T.; T. Suchiya, S. Umezawa & H.


