DEMETHYLATION AND AUTO-OXIDATION OF DIFFERENT COBALT-BLEOMYCIN COMPLEXES

CORNELIS M. VOS, DICK SCHIPPER*, JACOBUS D. M. HERSCHEID and GERRIT WESTERA**

RadioNuclide Centre, Free University, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
*Gist-Brocades N.V., Delft
**Department of Internal Medicine, Free University Hospital, Amsterdam, The Netherlands
(Received for publication March 23, 1982)

Demethylation of Co-bleomycin A2 by heating yields three different complexes: form I and form II and "orange" Co-bleomycin-demethyl A2. These complexes can be separated by HPLC and show different 1H NMR spectra. Preparation of Co-bleomycin-demethyl A2 by chelation of bleomycin-demethyl A2 with cobalt yields a Co-bleomycin-demethyl A2, which is auto-oxidized into Co-bleomycin A1.

Cobalt-bleomycin-demethyl A2 (Co-blm dA2) is a suitable intermediate in the preparation of tumour-localizing Co-blm complexes1,2. When Co-blm dA2 (Fig. 1) is prepared by heating Co-blm A23), an HPLC-chromatogram of the reaction mixture reveals that another product is formed besides the expected forms I and II of Co-blm dA24). The underlying study was conducted in order to identify the different products by both HPLC (high performance liquid chromatography) and 1H NMR (proton nu-

Fig. 1. Structure of bleomycins.
clear magnetic resonance).

Experimental

Bleomycin A$_2$ (lot U 4300 A$_2$S) was chelated with an equivalent of CoCl$_2$ in 0.05 M phosphate, pH 7.0. Demethylation was performed by heating Co-blm A$_2$ for 18 hours at 100~120°C under reduced pressure (about 10$^{-1}$ mm Hg). The demethylated products were purified by preparative HPLC (column: Nucleosil 10 C$_{18}$ (from Chrompack); eluent: 1% ammoniumacetate - methanol, 6: 4; flow 2 ml/minute; 1 mg per injection5,6, after which the methanol was evaporated and the residue lyophilized twice, the second time from D$_2$O. 1H NMR spectra were recorded on samples containing 0.2~1 mg Co-blm in 0.25 ml D$_2$O pH$_m$ 5.7 at 250 MHz on a Bruker WM 250 spectrometer.

Results and Discussion

Demethylation

In Fig. 2a the HPLC-chromatogram of the reaction mixture of Co-blm A$_2$ after heating is given. It is obvious that at least three products have been formed under the reaction conditions chosen. The peaks 1 and 2 were also obtained when free blm A$_2$ was demethylated by heat, purified and chelated with cobalt to give the known form I and II of Co-blm dA$_2$. These peaks (1 and 2) but also peak 3 (Fig. 2a) disappear upon addition of excess methylidide in methanol reforming Co-blm dA$_2$.7 Therefore it seems that the latter peak also represents a Co-blm dA$_2$ complex. This assignment is supported by 1H NMR analysis: the 1H NMR spectra (Fig. 3a,b,c) of the isolated peaks 1, 2 and 3 (Fig. 2) all show a singlet at 1.95~1.98 ppm for the S-CH$_3$-group.8,9 This resonance is not present in 1H NMR spectra of Co-blm A$_2$, whereas in free blm dA$_2$ this singlet is found at 1.90 ppm. The 1H NMR assignments are summarized in Table 1.

Table 1. Chemical shifts (relative to external TMS) in the high field part of 1H NMR spectra of several Co-bleomycin complexes.

<table>
<thead>
<tr>
<th>Assignmentsa</th>
<th>Observationsb</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_{(-11)}$H$_5$</td>
<td>Free (d) A$_2$</td>
<td>Co-A$_2$-I</td>
</tr>
<tr>
<td>C$_{(-52)}$H$_2$</td>
<td>1.86 2.32 2.37</td>
<td>2.31 2.36 2.38</td>
</tr>
<tr>
<td>C$_{(-54,55)}$H$_3$</td>
<td>"Orange" Co-A$_2$</td>
<td>Co-dA$_2$-II</td>
</tr>
<tr>
<td>C$_{(-53)}$H$_3$</td>
<td>"Orange" Co-dA$_2$</td>
<td>Co-A$_2$-I</td>
</tr>
<tr>
<td>C$_{(-53)}$H$_3$</td>
<td>"Orange" Co-dA$_2$</td>
<td>Co-A$_2$-I</td>
</tr>
<tr>
<td>C$_{(-54)}$H$_3$</td>
<td>Co-dA$_2$-II</td>
<td>Co-A$_2$-I</td>
</tr>
<tr>
<td>C$_{(-52)}$H$_2$</td>
<td>Co-B$_2$-I</td>
<td>Co-B$_2$-II</td>
</tr>
<tr>
<td>C$_{(-52,53)}$H$_2$</td>
<td>Co-B$_2$-II</td>
<td>Co-B$_2$-II</td>
</tr>
<tr>
<td>C$_{(-52)}$H$_2$</td>
<td>Co-ketoppept. A$_{12}$</td>
<td>"Orange" Co-blm12</td>
</tr>
</tbody>
</table>

$a)$ Annotations according to Fig. 1.

$b)$ Abbreviations used: dA$_2$: bleomycin-demethyl A$_2$; Co-A$_2$-I: cobalt-bleomycin A$_2$ form I; etc.

References
Oxidation

The demethylation product of blm A₂ is described to be sensitive to oxidation leading to blm A₁₁. On the basis of analogy the preparation of Co-blm A₁ by heating Co-blm A₂ in the presence of oxygen was attempted. The reaction mixture however, gives the same HPLC-chromatogram as does the reaction mixture, prepared by heating in vacuo.

On the other hand when Co-blm dA₂ (prepared by chelation of blm dA₂ with cobalt) is chromatographed several hours after preparation, two new peaks appear at the expense of Co-blm dA₂ (Fig. 2c).

Realizing that, upon chelation of blm with cobalt, a reactive oxygen species is formed and assum-
ing that this oxygen species is responsible for the observed phenomenon, this phenomenon should also occur when blm dA₂ is chelated with iron (II). And indeed, it was found that new peaks in the HPLC-chromatogram were formed at the expense of Fe-blm dA₂ immediately after iron (II) was added to blm dA₂. These peaks increase if a reducing agent like mercaptoethanol is added. Upon chelation with iron (III) only a Fe (III)-blm dA₂ complex is formed, because no reactive oxygen species is generated upon chelation with a trivalent iron. By analogy, Cu-blm dA₂ also does not yield Cu-blm A₁. These data suggest an auto-oxidation by the reactive oxygen species to Co-blm A₁, respectively Fe-blm A₁. The hypothesis of oxidation is also supported by ¹H NMR analysis. The ¹H NMR spectra (Table 1, Fig. 3d) of the isolated peaks 4 and 5 (Fig. 2c) both show a singlet at 2.57–2.58 ppm, which singlet is not present in the ¹H NMR spectra of Co-blm A₂ and Co-blm dA₂.

The slow generation of the reactive oxygen species by cobalt (up to about 50% Co-blm dA₂ is oxidized in 24 hours) may be due to a rather stable cobalt-oxygen bond, which supports the results obtained by Sugiyama.

Different Forms

Although the existence of different forms of Co-blm complexes is firmly established, new evidence can be found from the ¹H NMR spectra (Fig. 3 and 4). Analysis of the "methyl-region" of these spectra reveals a difference in chemical shift of the protons of the pyrimidine-methyl group of about 0.05 ppm between the so called forms I and II (see Table 1). This difference is not only observed for Co-blm dA₂ and Co-blm A₂, but also for Co-blm A₁ and Co-blm B₂. Even the resonances of the protons of the sulphonium group are somewhat different for both forms as can be seen in Fig. 4a, in which the ¹H NMR spectrum of Co-blm A₂ form I (contaminated with form II) is given.

Besides the forms I and II of each Co-blm, a third complex exists, the so called "orange" Co-blm. In a previous study it was already proved that the chromatographic behaviour of "orange" Co-blm A₁ differed from those of Co-blm A₂ form I and II. Now it is obvious also from the ¹H NMR spectra, that "orange" Co-blm differs from Co-blm form I and II (see the region around 1 ppm and the singlet at 2.18 ppm which occurs only in "orange" Co-blm). The third Co-blm dA₂ complex (peak 3 in Fig. 2a)
has also been assigned as "orange" Co-blm on basis of chromatographic behavior (similar retention times for the complex prepared in this study to that prepared by DeRiemer) as well as on basis of the H NMR spectrum, which is quite similar to that of "orange" Co-blm A, except of course for the resonances of the different functional groups. DeRiemer et al. prepared "orange" Co-blm by heating Co-blm overnight at 50°C followed by 2 hours at 110°C. Besides demethylation another process probably occurs upon heating of Co-blm, because demethylation by heating yields "orange" Co-blm dA, which is not formed when Co-blm dA is prepared by chelation of blm dA with cobalt. The differences between the H NMR spectra of the Co-blm complexes strongly suggest conformational differences between these complexes. Dabrowski et al. recently described the analysis of the cobalt complex of pseudotetrapeptide A of bleomycin, obtained by hydrolysis of "orange" and "green" (form I and II?) Co-blm A and found both hydrolysis products to be identical. This result may be explained by a distortion of the conformation of Co-blm by the rigorous hydrolysis method used.

The H NMR spectra may also be used to confirm the assignment form I and II of Co-blm complexes. The assignment form I and II has been made on the basis of the sequence of elution from a CM Sephadex C25 column and it was assumed that this sequence was similar for the different Co-bleomycins. Furthermore the chemical shifts of the methyl groups of the so called forms I appear to be identical (see Table 1) as are the chemical shifts in the case of the forms II.

Acknowledgment

The authors are grateful to Dr. A. Hoekstra (director of the RadioNuclide Centre of the Free University at Amsterdam, the Netherlands) for critical reading of the manuscript; they would like to thank Wave Zijlstra for his technical assistance and Mr. B. Van der Berg for drawing the figures.

References

8) Sadtlter Standard Spectra: No. 533 M (DMO; δ 2.52 ppm in CCl₄) and No. 6344 M (DMS; δ 2.06 ppm in CCl₄) (According to Ref. 9 these values are 3.20, 2.50 ppm respectively). Sadtlter Research Laboratories, Philadelphia

