STUDIES ON THE ISOTETRACENONE ANTIBIOTICS

III. A NEW ISOTETRACENONE ANTIBIOTIC, GRINCAMYCIN

Sir:

During the course of our screening program for new antitumor antibiotics, an actinomycete identified as Streptomyces griseoincarnatus was found to produce a new antibiotic, which was named grincamycin. This substance contains a modified benz[a]anthraquinone chromophore which is characteristic of the isotetracenone antibiotics.1 2

The producing organism was cultivated on a rotary shaker at 27°C for 3 days in 500-ml Erlenmeyer flasks containing a medium consisting of glucose 2.5%, soybean meal 1.5%, dry yeast 0.2% and calcium carbonate 0.4% (pH 7.0). The cultured broth (1 liter) was filtered with the aid of Celite and the mycelial cake was extracted with Me2CO. After being evaporated in vacuo, the extract was partitioned between EtOAc and water. The organic layer was concentrated to dryness and then subjected to Toyopearl HW-40 column chromatography. The active fraction eluted with MeOH was evaporated in vacuo and applied to a silica gel

Table 1. 13C and 1H NMR spectral data for grincamycin in CDCl3.

<table>
<thead>
<tr>
<th>Aquayamycin</th>
<th>Rhodinose 1</th>
<th>Rhodinose 2</th>
<th>Cinerulose A 1</th>
<th>Cinerulose A 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ0</td>
<td>δH (J in Hz)</td>
<td>δ0</td>
<td>δH (J in Hz)</td>
<td>δ0</td>
</tr>
<tr>
<td>1 204.0 s</td>
<td>3.19 dd (13.2, 2.7), 2.51 d (13.2)</td>
<td>1 99.3 d 4.99 br s</td>
<td>2 10.5 d 2.02 m, 1.70 m</td>
<td>1 98.9 d 5.08 dd (5.8, 5.0)</td>
</tr>
<tr>
<td>2 50.2 t</td>
<td>2 24.8 t 2.10 m, 1.91 m</td>
<td>2 25.3 t 2.10 m, 1.91 m</td>
<td>2 28.5 t 2.39 m, 2.10 m</td>
<td>2 28.5 t 2.39 m, 2.10 m</td>
</tr>
<tr>
<td>3 82.3 s</td>
<td>3 74.8 d 3.69 br s</td>
<td>3 24.8 t 2.10 m, 1.91 m</td>
<td>3 33.6 t 2.50 m, 2.10 m</td>
<td>3 33.6 t 2.50 m, 2.10 m</td>
</tr>
<tr>
<td>4 44.4 t</td>
<td>4 47.5 d 3.69 br s</td>
<td>4 74.8 d 3.69 br s</td>
<td>4 74.8 d 3.69 br s</td>
<td>4 74.8 d 3.69 br s</td>
</tr>
<tr>
<td>4a 79.8 s</td>
<td>5 67.9 d 4.22 q (6.4)</td>
</tr>
<tr>
<td>5 145.1 d</td>
<td>6 17.3 d 1.29 s 3H, d (6.4)</td>
</tr>
<tr>
<td>6 117.1 d</td>
<td>6.91 d (9.8)</td>
<td>6.91 d (9.8)</td>
<td>6.91 d (9.8)</td>
<td>6.91 d (9.8)</td>
</tr>
</tbody>
</table>

Assignments are based on chemical shift data, decoupling experiments and two-dimensional C-H correlation spectral analysis.

** Assignments of these signals may be interchanged.
column. Development of the column with CHCl₃-MeOH (50:1) gave a yellow band, which was collected and concentrated to dryness to give a yellow powder (75 mg) of grincamycin in pure form.

The physico-chemical properties of grincamycin are as follows: MP 153~158°C; [α]D 20° -48° (c 0.1, CHCl₃); Anal Calcd for C₄₉H₆₂O₁₈: C 62.68, H 6.65, O 30.67; found: C 62.62, H 6.60, O 30.78; fast atom bombardment mass spectra m/z 961 (M+Na)+; UV λmax nm (E₀₁%) 219 (312), 316 (59), 421 (66) in MeOH; 227 (361), 318 (113), 390 (36), 553 (61) in 0.01N NaOH-MeOH; IR νmax (KBr) cm⁻¹ 3430, 2980, 1730, 1640.

The ¹³C and ¹H NMR spectral data for grincamycin (Table 1) indicate that this antibiotic consists of 1 mol of aquayamycin,³) 2 mol of rhodinose⁶) and 2 mol of cinerulose A.⁷) Among the isotetracenone antibiotics containing an aquayamycin moiety, these properties are similar to those of P-1894B⁴) (vineomycin A),⁵) which contains 2 mol of aculose⁶) in place of cinerulose A. The tetrahydro derivative of P-1894B was prepared by catalytic hydrogenation with 5% Pd-BaSO₄ at room temp for 5 minutes and compared with grincamycin. These two compounds showed good accordance in their chromatographic and spectral behaviors. Therefore, the structure of grincamycin was determined as shown in Fig. 1.

Grincamycin inhibited the growth of P388 murine leukemia cells (IC₅₀ 13 ng/ml) and showed antimicrobial activity against Gram-positive bacteria. MIC values as determined by the agar dilution method on Mueller-Hinton agar were 50 μg/ml for Staphylococcus aureus FDA 209 P, 25 μg/ml for Micrococcus luteus ATCC 9341 and 50 μg/ml for Bacillus cereus IAM 1729. Grincamycin had no antimicrobial activity against Gram-negative bacteria (Escherichia coli NIHJ, Salmonella typhimurium IID 971, Pseudomonas aeruginosa NCTC 10490), yeasts (Saccharomyces cerevisiae ATCC 9763, Candida albicans Yu 1200) and fungi (Aspergillus fumigatus IFO 4400, Penicillium chrysogenum ATCC 10002, Trichophyton mentagrophytes) tested at maximum dose of 100 μg/ml.

Acknowledgment

We wish to thank Dr. H. Okazaki, Takeda Chemical Industries, Ltd., and Prof. S. Omura, Kitasato University, for providing us with an authentic sample of P-1894B (vineomycin A).}

Yoichi Hayakawa
Takafumi Iwakiri
Kanji Imamura
Haruo Seto
Noboru Ōtake

† Present address: Department of Bioscience and Biotechnology, Teikyo University, Roppongi, Minato-ku, Tokyo 106, Japan.
References

1) Hayakawa, Y.; T. Iwakiri, K. Imamura, H. Seto & N. Otake: Studies on the isotetra-
cenone antibiotics. I. Capoamycin, a new anti-
tumor antibiotic. J. Antibiotics 38: 957~959,
1985

2) Hayakawa, Y.; T. Iwakiri, K. Imamura, H. Seto & N. Otake: Studies on the isotetra-
cenone antibiotics. II. Kerriamycins A, B and
C, new antitumor antibiotics. J. Antibiotics
38: 960~963, 1985

3) Sezaki, M.; S. Kondo, K. Maeda, H. Umezawa
& M. Ohno: The structure of aquayamycin.
Tetrahedron 26: 5171~5190, 1970

4) Stevens, C. L.; P. Blumbergs & D. L. Wood:
Stereochemical identification and synthesis of
amicetose and the stereochemical identifica-
tion of rhodinose and the sugar from streptolydigin.
J. Am. Chem. Soc. 86: 3592~3594, 1964

5) Keller-Schierlein, W. & W. Richle: Neuartige
Zucker aus Anthracyclin-Antibiotika.
Chimia 24: 35~36, 1970

6) Ohta, K.; E. Mizuta, H. Okazaki & T.
Kishi: The absolute configuration of P-1894B,
a potent prolyl hydroxylase inhibitor. Chem.
Pharm. Bull. 32: 4350~4359, 1984

7) Imamura, N.; K. Kakinuma, N. Ikekawa, H.
Tanaka & S. Omura: Identification of the
aglycon part of vineomycin A; with aquaya-
mycin. Chem. Pharm. Bull. 29: 1788~1790,
1981

8) Yoshimoto, A.; T. Ogasawara, I. Kitamura,
T. Oki, T. Inui, T. Takeuchi & H. Umezawa:
Enzymatic conversion of aclacinomycin A to Y
by a specific oxidoreductase in Streptomyces.
J. Antibiotics 32: 472~481, 1979