INHIBITION OF TYROSINE PROTEIN KINASE BY SYNTHETIC ERBSTATIN ANALOGS

Sir:

The effective synthesis of the specific tyrosine protein kinase (TPK) inhibitor, erbstatin (1), and its dihydroxy analogs (11 and 12) was reported in the preceding paper1). Herein, mono-, di- and tri-hydroxy analogs of 1 have been synthesized by a similar procedure and their TPK inhibiting activities were evaluated.

Mono-hydroxy analogs such as 2-hydroxy- (2), 3-hydroxy- (3), 4-hydroxy- (4), 5-bromo-2-hydroxy- (5) and 2-hydroxy-5-methoxy-compound (6) were prepared in high yields from corresponding aldehydes and SCHÖLLKOPF's reagent2), diethyl(isocyanomethyl)phosphonate (15), as described in the preceding paper1). On the other hand, similar treatment of 2,4-di- or 2,3,4-tri-hydroxybenzaldehyde with the phosphonate (15) gave no desired products although a large number of variables including bases [NaN(Si(CH3)3)2, BuLi and NaH] were assessed. The protection, however, of the hydroxyl groups in the aldehydes with trimethylsilyl chloride ((CH3)3SiCl - Et3N in THF) gave suitable materials 13 and 14 for subsequent reaction with the reagent (15) to give the intermediary isocyanides (16) [13: 1H NMR (CDCl3) δ 0.30 (18H, s), 6.35 ~ 6.60 (2H, m), 7.80 (1H, d, J = 8.5 Hz), 10.36 (1H, s), 14: 1H NMR (CDCl3) δ 0.20, 0.25 and 0.28 (27H, each s), 6.62 (1H, d, J = 8.5 Hz), 7.42 (1H, d, J = 8.5 Hz), 10.27 (1H, s)] (Fig. 2). By acid hydrolysis (0.1 n HCl - EtOAc)3), the isocyanides (16) were directly converted into the desired formamides (7) and (8) with removal of the trimethylsilyl groups in 57% and 53% overall yields [7: 1H NMR (acetone-d6) δ 6.25 ~ 6.55 (3H, m), 7.15 (1H, d, J = 8.5 Hz), 7.56 (1H, dd, J = 15 and 11 Hz), 8.17 (2H, s), 8.47 (1H, s), 9.1 (1H, br), 8: 1H NMR (acetone-d6) δ 6.43 (1H, d, J = 9 Hz), 6.47 (1H, d, J = 15 Hz), 7.76 (1H, d, J = 9 Hz), 7.4 (2H, br), 7.62 (1H, dd, J = 15 and 10.5 Hz), 8.1 (1H, br), 8.22 (1H, s), 9.2 (1H, br)].

Other related compounds (9) and (10) were prepared as follows. The peracetylation (Ac2O - Et3N - 4-dimethylaminopyridine in THF) of

Fig. 1. Erbstatin and its analogs.

Fig. 2.

1 R1 = 2-OH R2 = 5-OH R4 = H R4 = NHCHO (erbstatin)
2 R1 = 2-OH R2 = H R4 = H R4 = NHCHO
3 R1 = 3-OH R2 = H R4 = H R4 = NHCHO
4 R1 = 4-OH R2 = H R4 = H R4 = NHCHO
5 R1 = 2-OH R2 = 5-Br R4 = H R4 = NHCHO
6 R1 = 2-OH R2 = 5-OCH3 R4 = H R4 = NHCHO
7 R1 = 2-OH R2 = 4-0H R4 = H R4 = NHCHO
8 R1 = 2-OH R2 = 3-OH R4 = 4-OH R4 = NHCHO
9 R1 = 2-OH R2 = 5-OH R4 = H R4 = NHAc
10 R1 = 2-OH R2 = 5-OH R4 = H R4 = COOH
11 R1 = 2-OH R2 = 3-OH R4 = H R4 = NHCHO
12 R1 = 3-OH R2 = 4-OH R4 = H R4 = NHCHO
13 R = H
14 R = O-TMS

15 (EtO)2PCH2NC 16
The TPK inhibitory activities of above derivatives are listed in Table 1. The TPK activities were assayed using the A-431 cell membrane fraction as the enzyme/substrate as described previously. As shown in the table, 2-(2,3,4-tri hydroxyphenyl)vinylformamide (8), 2,5-dihydroxy cinnamic acid (10), 2-(2,3-dihydroxyphenyl)vinylformamide (11) and 2-(3,4-dihydroxyphenyl)vinylformamide (12) showed potent inhibitory activities comparable to erbstatin (1). Other biological activities and the stability of these compounds are being studied.

KUNIO ISSHIKI
MASAYA IMOTO
TSUTOMU SAWA
KAZUO UMEZAWA
TOMIO TAKEUCHI
HAMAO UMEZAWA

Institute of Microbial Chemistry,
3-14-23 Kamiosaki, Shinagawa-ku,
Tokyo 141, Japan

TOSHIRO TSUCHIDA
TAKEO YOSHIOKA

Sanraku Inc., Central Research Laboratories,
Johnan 4 chome, Fujisawa 251, Japan

KUNIAKI TATSUTA

Department of Applied Chemistry,
Faculty of Science and Technology,
Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223,
Japan

(Received March 7, 1987)

References

