REPLACEMENT OF STREPTOMYCES HYGROSCOPICUS GENOMIC SEGMENTS WITH IN VITRO ALTERED DNA SEQUENCES

HIROYUKI ANZAI, YOICHI KUMADA, OSAMU HARA, TAKEHI MURAKAMI, REIKO ITOH, ERIKO TAKANO, SATOSHI IMAI*, ATSUYUKI SATOH* and KOZO NAGAOKA

Pharmaceutical Research Laboratories, Meiji Seika Kaisha, Ltd., Morooka-cho, Kohoku-ku, Yokohama 222, Japan
Pharmaceutical Development Laboratories, Meiji Seika Kaisha, Ltd., Horikawa-cho, Saiwai-ku, Kawasaki 210, Japan

(Received for publication July 25, 1987)

We have developed a method for gene replacement in Streptomyces hygroscopicus which permits introduction of an in vitro derived mutation carried on a plasmid into the chromosome. We constructed the plasmid pMSB212 which can replicate in S. hygroscopicus and contains the step5 gene of the bialaphos biosynthetic pathway which was inactivated by a frame-shift mutation caused by filling in the cohesive ends of the EcoK I site in the structural gene. pMSB212 was introduced into a bialaphos producer strain and by protoplast regeneration of the primary thiostrepton-resistant transformants, non-producing mutants, were obtained. Biochemical and genetical analyses indicated that these mutants were specifically blocked by introduction of the frame-shift mutation in the step5 gene on the chromosome. This method will enable us to obtain isogenic mutants of known genes and to identify new genes encoded on a cloned fragment.

Streptomycetes are very important microorganisms which produce many antibiotics and enzymes of commercial value. Recent developments in Streptomyces gene cloning have resulted in cloning of the resistance, biosynthetic, and regulatory genes of antibiotics, and elucidation of Streptomyces gene organization and regulation1~7.

Mutant analysis gives us much information about gene function and regulation. Mutants usually have been obtained by using chemical or physical mutagens, but there have been reports recently about another mutagenic approach, gene replacement techniques in Escherichia coli8), Bacillus subtilis9~12) or Saccharomyces cerevisiae13,14).

It is desirable to devise a method for generating specific mutations in the chromosomes of streptomycetes. CHATER and BRUTON have developed the mutational cloning method using derivatives of temperate phage and applied it to Streptomyces coelicolor and Streptomyces lividans15).

In this paper we describe a method that allows the introduction of an in vitro derived mutation carried on the plasmid into the chromosome of Streptomyces hygroscopicus. This approach is based on our finding that recombination between the host chromosome and a plasmid containing a homologous region to it occurred in S. hygroscopicus6,7, which produces a tripeptide antibiotic, bialaphos16).

Materials and Methods

Bacterial Strains and Plasmids

S. lividans 66 was kindly supplied by Dr. N. D. LOMOVSKAYA and Dr. K. F. CHATER. S. hygroscopicus strains are listed in Table 1. Plasmid pMSB726) has a 670 bp Sph I-Bgl II fragment containing a portion of the step5 gene in pIJ702.
DNA Manipulation and Transformation

Chromosomal DNA was isolated as described by Smith in Hopwood et al. Plasmid preparations from streptomycetes were carried out as described by Murakami et al. Restriction enzymes and T4 DNA-Ligase (Takara Shuzo Co., Ltd., or Toyobo Co., Ltd.), and calf intestinal alkaline phosphatase were used according to the recommendations of the suppliers. DNA polymerase I (Klenow fragment, Takara Shuzo Co., Ltd.) was used to fill in the site of EcoRI according to the protocol of Maniatis et al. Gel electrophoresis of DNA was done according to Hopwood et al. Transformation of S. lividans protoplasts was carried out by the method of Thompson et al. S. hygroscopicus was transformed according to Murakami et al.

Table 1. Strains of Streptomyces hygroscopicus.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Defective step</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP8</td>
<td>Step13</td>
<td>Imai et al.</td>
</tr>
<tr>
<td>NP44</td>
<td>Step6</td>
<td>Imai (unpublished)</td>
</tr>
<tr>
<td>NP45</td>
<td>Step12</td>
<td>Imai et al.</td>
</tr>
<tr>
<td>NP46</td>
<td>Step3</td>
<td>Imai et al.</td>
</tr>
<tr>
<td>NP47</td>
<td>Step1</td>
<td>Imai et al.</td>
</tr>
<tr>
<td>NP213</td>
<td>Step5</td>
<td>Seto et al.</td>
</tr>
<tr>
<td>NP221</td>
<td>Step4</td>
<td>Imai et al.</td>
</tr>
<tr>
<td>HP5-29</td>
<td>None</td>
<td>Anzai et al.</td>
</tr>
</tbody>
</table>

Protoplast Regeneration and Curing of Plasmids

Protoplast regeneration of S. hygroscopicus was carried out in the same manner as its transformation, but in the absence of thiostrepton. Thiostrepton-sensitive clones were scored on Nutrient agar (Difco) containing 20 μg/ml of thiostrepton.

Bialaphos Productivity and Co-synthesis Tests

The production of bialaphos was detected by a conventional agar plug assay. Agar plugs of A4 medium were inoculated and incubated for 5 days at 28°C. The plugs were then placed on the surface of the bialaphos assay agar medium of Ogawa et al. seeded with lawns of the bialaphosensitive indicator bacterium, Bacillus subtilis ATCC 6633. For the co-synthesis tests, mycelial suspensions of two non-producing mutants were spread about 2 mm apart on opposite halves of a Petri dish containing A4 medium. After 5 days of growth at 28°C, an agar strip was removed from the center of the plate and placed on a bialaphos assay plate.

Preparation of Cell Extracts

Cultures of S. hygroscopicus were grown at 28°C for 4 days in 30 ml of liquid production medium. Mycelium was collected by centrifugation and then washed twice in cold TM buffer (50 mM Tris-HCl, 5 μM 2-mercaptoethanol, pH 7.0). Washed mycelium was suspended in 20 ml of TM buffer and disrupted by sonication. Cell debris was removed by centrifugation (17,000 × g, 20 minutes, 4°C).

SDS-polyacrylamide Gel Electrophoresis (PAGE)

SDS-PAGE was carried out according to Laemmli. Samples were denatured at 100°C for 5 minutes in the presence of 1% SDS and 10% 2-mercaptoethanol before loading on a 12.5%-polyacrylamide gel. We used the SDS-PAGE Standard [Low] (Bio-Rad) as protein size markers.

Southern Hybridization

Transfer of DNA from agarose gels to nylon membranes (Hybond-N, Amersham, Ltd.) were carried out by the method of Southern following the recommendation of the suppliers. DNA probes were labeled by the Nick Translation Kit (Amersham, Ltd.). Pre-hybridization and hybridization were done as described in Hopwood et al.

Results

Construction of Plasmids Carrying the Inactivated Step5 Gene

pMSB27 (Fig. 1) contains the entire step5 gene of the bialaphos biosynthetic pathway, and has a unique EcoRI site located within this gene. pMSB27 DNA was digested with EcoRI and the cohesive ends were filled in by treating it with DNA polymerase I (Klenow fragment). The ligated plasmid DNA was digested with EcoRI again and used to transform S. lividans. Thiostrepton-
Fig. 1. Construction of plasmids carrying the inactivated step5 gene.

Above map indicates the bialaphos biosynthetic gene cluster. Numbers under the map represent steps of the biosynthetic pathway.

bar: Bialaphos-resistant gene, brpA: bialaphos regulatory gene. pM8B27 was constructed by the insertion of a 3.0-kb BamH I fragment into the BamH I site of pIJ680. Thick lines, Streptomyces hygroscopicus sequences; thin lines, vector sequences.

Table 2. Isolation of non-producing mutants from HP5-29 containing pMSB212 and pMSB27.

<table>
<thead>
<tr>
<th>Producer</th>
<th>Thio⁺</th>
<th>Thio⁻</th>
<th>Thio⁺</th>
<th>Thio⁻</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMSB212</td>
<td>181</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>pMSB27</td>
<td>153</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>200</td>
</tr>
</tbody>
</table>

Thio: Thiostrepton, ⁺: resistant, ⁻: sensitive.

resistant transformants were selected. Most of the transformants contained the same plasmid, pMSB212, lacking the EcoR I site (Fig. 1). The digestion pattern of pMSB212 with other restriction endonucleases was the same as pMSB27.

Isolation of Mutants Blocked at Step5

pMSB212 and pMSB27 were introduced into S. hygroscopicus HP5-29 and thiostrepton-resistant clones were selected. Protoplasts prepared from these clones were spread on regeneration plates without thiostrepton. Two hundred colonies from each regenerated clone were picked onto Nutrient agar without thiostrepton and replicated to Nutrient agar containing thiostrepton, and to agar plugs containing A4 medium to measure thiostrepton sensitivity and bialaphos productivity. Five bialaphos non-producing mutants from HP5-29 containing pMSB212 were obtained but none from the transformants containing pMSB27 (Table 2). Four out of 5 non-producing mutants still contained the
Table 3. Co-synthesis test of the generated mutants.

<table>
<thead>
<tr>
<th>Mutant</th>
<th>NP47 (1)</th>
<th>NP46 (3)</th>
<th>NP221 (4)</th>
<th>NP213 (5)</th>
<th>NP44 (6)</th>
<th>NP45 (12)</th>
<th>NP8 (13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VM2-1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VM2-2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VM2-3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VM2-4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NP213</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* Number in parenthesis shows blocked step.
+ , -: Bialaphos production.

plasmid, pMSB212. We designated the thio-
strepton-sensitive non-producer as VM1 and the
thiostrepton-resistant ones as VM2-1, 2-2, 2-3
and 2-4.

Co-synthesis Test of the Generated Mutants

To determine which step was defective in
VM1, 2-1, 2-2, 2-3, and 2-4, a co-synthesis test was
done. All mutants could convert intermediates
secreted by NP44, NP45, and NP8, which are
blocked at step6, 12 and 13, respectively (Table
3). Furthermore, these mutants secreted inter-
mediates which NP47, NP46 and NP221 could
convert to bialaphos. However, NP213, which
is blocked at step5, was not able to produce
bialaphos in a co-synthesis test with these mu-
tants.

Analysis of Intracellular Protein

SDS-PAGE analysis of intracellular proteins
showed that a 32K-dalton protein, which is the
product of the step5 gene, could not be detected
in mutant VM1. The amounts of other proteins
were the same as those of the parent strain HP5-29 (Fig. 2). Demethylphosphinothricin (DMPT) acetyl-
transferase activity, which is the product of step10, was about the same in strains VM1 and HP5-29
(0.155 and 0.170 u/mg protein, respectively).

Southern Hybridization

Southern analysis was used to confirm the genotype of VM1. Chromosomal DNAs, obtained
from VM1 and its parent HP5-29, was digested with BamH I, EcoR I and both BamH I and EcoR I,
then electrophoresed on agarose gels, and transferred to nylon membranes. The hybridization pat-
tern of these DNAs, when probed with 32P-labeled pMSB27, is shown in Fig. 3. The hybridization
data in lane 4 compared with lane 3 confirm the restriction pattern expected for replacement of the
Table 4. Recovery of bialaphos productivity in VM1.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relative productivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP5-29/none</td>
<td>100</td>
</tr>
<tr>
<td>VM1/none</td>
<td>0</td>
</tr>
<tr>
<td>VM1/pMSB27</td>
<td>90</td>
</tr>
<tr>
<td>VM1/pMSB72</td>
<td>0.5</td>
</tr>
<tr>
<td>VM1/pMSB212</td>
<td>0</td>
</tr>
</tbody>
</table>

normal DNA fragment containing the step5 gene with one lacking the internal EcoR I site (Fig. 1). There are two bands, 0.7 kb and 2.3 kb in size, in lane 3 but only one band, 3.0 kb in size, in lane 4. This observation suggests the lack of the EcoR I site in the step5 gene locus within the 3.0-kb BamH I fragment on the VM1 chromosome.

Restoration of Bialaphos Production by Re-transformation

VM1 has already been cured of the plasmid pMSB212. Therefore we re-transformed VM1 with pMSB27, pMSB212 and pMSB72 which contained the wild-type, mutant-type and a portion of step5 gene, respectively. As shown in Table 4, pMSB27 and pMSB72 could restore the bialaphos productivity in VM1 but pMSB212 could not. VM1 containing pMSB72 produced a low level of bialaphos compared with the parent strain HP5-29, because this restoration might be caused by recombination between the plasmid and the chromosome.

Discussion

In this report, we have described a method for replacing a specific chromosomal locus in S. hygroscopicus with altered DNA sequences constructed in vitro. Other examples of gene replacement in the Streptomyces have been reported: i) Recombination between the mutant chromosome and the homologous region of cloned act gene cluster in S. coelicolor, ii) the gene homogenetization of bald genes in S. coelicolor.

We assume that the replacement of the genomic segments with altered DNA sequences on the plasmid depended on in vivo homologous recombination. Thus the location of the base substitution mutation and the size of a deletion or an insertion within the cloned fragment should be important. Since it is presumed that the frequency of homologous recombination between a plasmid and chromosome increases with the size of homologous regions on both sides of a mutation, large insertions or deletions will decrease the efficiency of gene replacements.

In the case of the step5 gene, we could not obtain non-producing mutants directly by the transformation of a bialaphos producer strain with pMSB212. By protoplast regeneration of a producer strain containing pMSB212, we were able to isolate the desired mutants, and to cure the strain of the resident plasmid at a frequency of ca. 7%. However, if the mutant obtained still possesses a plasmid, it is possible to cure it by repeated protoplast regeneration (Y. Kumada et al., and O. Hara et al.; in preparation). Therefore the protoplast regeneration procedure was indispensable to both single colony isolation of mutants and plasmid curing.

Co-synthesis tests showed that the non-producing mutants, VM1 and others, isolated by our gene
Fig. 4. Putative pathways of gene replacement in *Streptomyces hygroscopicus*.

(a) A double crossover replacement of the wild-type gene with an altered sequence occurs.

(b) A single crossover between a plasmid and a chromosome occurs and follows by a loss of the plasmid sequence. Resulting that an altered sequence remains on the chromosome.

gene replacement method and NP213, obtained by the conventional mutation method, are blocked at step5 of the bialaphos biosynthetic pathway and are isogenic. Moreover VM1 accumulated phosphinoformic acid and could convert phosphinomethylmalic acid to bialaphos like NP213 (data not shown).

We have already reported that the product of the step5 gene is a 32K-dalton protein and is produced in a large amount by a producer strain7). SDS-PAGE analysis indicated the loss of a 32K-dalton protein mutant in VM1, as in NP2137), and the restoration of its lesion by introduction of plasmid pMSB27 containing all of the step5 gene. Therefore, VM1 is a step5 blocked mutant like NP213.

Southern hybridization analysis showed that VM1 lacks the EcoRI site in the step5 structural gene on the chromosome. Moreover pMSB212 could not restore the bialaphos productivity of VM1, although both pMSB27 and pMSB72 containing an entire or a portion of this gene, respectively, could do so. These observations indicate that the mutation on the chromosome of VM1 is located at an EcoRI site as expected.

The pathway for replacement of a chromosomal segment with an altered sequence in *E. coli*, *B. subtilis* and *S. cerevisiae* has been elucidated8~14). Since we used a replicating vector in *S. hygroscopicus*, pIJ680, instead of a suicide vector, it is thought that the mechanism of replacement in this strain differed from that of *E. coli*8) and *S. cerevisiae*9,10).

We assume that there are two possibilities for the mechanism of the gene replacement in *S. hygroscopicus* as shown in Fig. 4. One is by a double crossover and another is by a single crossover leading to integration and a subsequent excision. Because both systems result in the same product, we must perform further experiments to determine which mechanism is operating in *S. hygroscopicus*.

This gene replacement method should be applied to other *Streptomyces* species and would be useful for the following purposes: i) The isolation of an isogenic mutant of a known gene already defined; for example, a blocked mutant of an antibiotic or an auxotroph mutant, ii) the improvement of a host-vector system by the inactivation of unfavorable genes; for example, protease or restriction
enzyme genes, iii) the identification of an unknown gene located on the cloned DNA fragment by the loss of an identifiable function. We emphasize the possible application to the last purpose. Gene cloning experiments have revealed that the genes which code for the resistance to and biosynthesis of antibiotics are closely linked, and moreover that regulatory genes can be located in the gene cluster. Thus this new technique should enable one to elucidate whether unknown biosynthetic or regulatory genes of antibiotics are located close to the production or resistance genes which have already been cloned. For example, some new genes of the bialaphos biosynthetic pathway encoded on a cloned DNA fragment have been identified recently using this method (Y. Kumada et al., and O. Hara et al.; in preparation).

Acknowledgment

We would like to thank Charles J. Thompson for his fruitful discussion and Yachiyo Yoshizawa for her excellent technical assistance.

References

