REVISED STRUCTURE AND THE CHEMICAL TRANSFORMATIONS OF FR900148

NOBUYOSHI YASUDA and KAZUO SAKANE

New Drug Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6 Kashima, Yodogawa-ku, Osaka 532, Japan

(Received for publication November 24, 1990)

The structure of an antibiotic FR900148, which was isolated from Streptomyces xanthocidicus No. 301 in 1980, was reported as a pyrrolidine derivative as shown in Fig. 1.1,2 In 1984, CHAIET et al.3, isolated 4-amino-3-chloro-2-pentenedioic acid and they suggested that the structure 1 of FR900148 was questionable. This prompted us to reexamine the previous conclusions and has led us to conclude that the correct structure of FR900148 is represented by the open-chain acid (2).

FR900148 was reisolated from the same strain

Fig. 1. Previous structure of FR900148.

Fig. 2. Chemical modification of the free derivative (2) of FR900148.

1 Present address: Process Research Labs., Merck Sharp & Dohme, P. O. Box 2000, Rahway, NJ 07065, U.S.A.
and its biological and physical data were exactly the same as in the previous isolation. In order to confirm the presence of a chlorine atom in the antibiotic, free acid derivative (2) was isolated from the fermented broth filtrate by successive column chromatography on activated carbon, DEAE-Sephadex, CM-Sephadex and Sephadex G15. The 13C NMR of 2 in D$_2$O showed 10 carbons (5 17.38 (q), 18.21 (q), 30.48 (d), 59.10 (d), 61.92 (d), 126.51 (d), 134.91 (s), 169.06 (s), 171.94 (s), and 172.66 (s)). FAB-MS data of the sodium salt of 2 showed strong signals at m/z 279 (M+H$^+$), 301 (M+Na$^+$), and 323 (M+2Na$^+$) and each signal displayed the usual one chlorine isotope pattern. FAB-MS data of 2 (free acid) showed signals at m/z 199 ((M+H$^+$) of 7), 235 ((M+H$^+$) - COO), 245 (M-Cl$^-$) and 279 (M$^+$), and two signals at 235 and 279 displayed the usual one chlorine isotope pattern. Titration of 2 showed pKa 1 = 2.00, pKa 2 = 3.37 and pKa 3 = 7.97. (In the previous report1, the titration was reported as pKa 1 = 3.25 and pKa 2 = 7.90). Therefore, 2 must have two carboxylic acid moieties and one amino group. From these data and also elemental analysis of 2 (C$_{10}$H$_{15}$ClN$_2$O$_5$·2H$_2$O: Calcd: C 38.16, H 6.08, Cl 11.26, N 8.90, Found: C 37.87, H 5.08, Cl 10.79, N 9.23), the formula of 2 is established to be C$_{10}$H$_{15}$ClN$_2$O$_5$.

Then we reexamined the chemical transformations of 22. Hydrogenation2 of 2 gave a dipeptide 3. Acid hydrolysis2 of 3 gave l-Val and l-Glu, whose absolute stereochemistries were determined by chiral HPLC. FAB-MS and 2D-NMR data of the Boc derivative (4) of 3 clearly revealed that 4 was Boc-l-Val-l-Glu, which was converted into the corresponding dimethyl ester by treatment with diazomethane. The fact that no racemization had occurred during these reactions suggested that each corresponding carbon in 2 to the α-carbons in l-Val and l-Glu should be an optically active secondary carbon. Treatment of 2 with diazomethane in MeOH2 gave an oxazole compound 5, whose structure was confirmed by 1H NMR (CDCl$_3$) δ 0.94 (3H, d, J = 7 Hz), 0.98 (3H, d, J = 7 Hz), 2.16 (1H, m), 3.74 (3H, s), 3.91 (3H, s), and 4.13 (2H, s), 13C NMR (CDCl$_3$) δ 18.082 (q), 18.917 (q), 31.982 (t), 33.343 (d), 52.203 (q), 52.577 (q), 55.802 (d), 129.053 (s), 151.541 (s), 162.339 (s), 165.996 (s), and 168.040 (s), and UV (λ = 213 nm, ε = 1.10 × 104 in EtOH)4.

1H NMR of the acetylated compound 62 in THF-d$_8$ and THF-d$_8$-D$_2$O were very similar to that of 2. Two amide protons of 6 were assigned from a decoupling experiment as follows: δ 8.08 (1H, d, J = 7.92 Hz, D-Val-CONH$^-$) and 7.24 (1H, d, J = 7.90 Hz, AcNH-Val-). The fact that no racemization had occurred at only the amino moiety of the valine group. Interestingly, 2 spontaneously decarboxylated upon dissolution in DMSO-d$_6$ and gave the oxazolylactic acid derivative 7 (1H NMR (DMSO-d$_6$) δ 0.84 (3H, d, J = 7 Hz), 0.99 (3H, d, J = 7 Hz), 2.27 (1H, m), 3.80 (2H, s), 4.32 (1H, d, J = 6 Hz), and 7.08 (1H, s); 13C NMR (DMSO-d$_6$) δ 17.18 (q), 18.54 (q), 30.78 (d), 31.21 (t), 53.03 (d), 124.56 (d), 147.27 (s), 158.96 (s), and 169.56 (s).

From these data and 13C-1H shift collation by long-range coupling (COLOC) of 2, the structure of 2 and the chemical transformations were revised as shown in Fig. 2. We could not determine the geometry of the double bond, however, from Chaiet's data3, we assumed that it is the Z form.

Acknowledgment

We thank Drs. M. Hashimoto, M. Fujioka, and S. Takase for measurement of physical data and for helpful discussion.

References