CYTOBLASTIN, A LOW MOLECULAR WEIGHT IMMUNOMODULATOR PRODUCED BY
Streptoverticillium eurocidicum

Sir:
In the course of screening for immunomodulators modulating T cell functions, we found a novel, low MW immunomodulator named cytoblastin in a culture filtrate of the strain, MI43-37F11 which was isolated from the soil sample collected in Yokohama City, Kanagawa Prefecture, Japan. The strain was identified as Streptoverticillium eurocidicum on the basis of its cultural properties. Cytoblastin showed low cytotoxicity and no antimicrobial activity and promoted the proliferation of T cells. In this communication, the production, isolation, physicochemical properties, structure and biological properties are reported.

A slant culture of the strain, MI43-37F11 was inoculated into 110 ml of the medium consisting of galactose 2.0%, dextrin 2.0%, soy peptone 1.0%, corn steep liquor 0.5%, (NH₄)₂SO₄ 0.2%, CaCO₃ 0.2%, silicone oil 0.003% (adjusted to pH 7.4 before sterilization) and incubated at 30°C for 2 days on a rotary shaker (180rpm). For production of cytoblastin, 2.5 ml of the culture was transferred to 125 ml of the production medium consisting of glycerol 2.0%, soy bean meal (Ajinomoto Co., Inc.) 1.5%, KH₂PO₄ 0.1%, CoCl₂·6H₂O 0.0005%, silicone oil 0.003%, (pH 6.2 adjusted with 1 N K₂HPO₄ before sterilization) in Sakaguchi flask (500 ml) and cultured at 27°C for 4 days on a reciprocating shaker at 120 times per minute.

The culture filtrate (9 liters) was extracted with EtOAc. The EtOAc extract was concentrated under a reduced pressure to give an oily residue (2.0 g) and it was applied to silica gel column. After washing the column with chroloform-methanol (10:1), the

Table 1. Physico-chemical properties of cytoblastin.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>White powder</td>
</tr>
<tr>
<td>FAB-MS (m/z)a</td>
<td>491</td>
</tr>
<tr>
<td>Negative</td>
<td>489</td>
</tr>
<tr>
<td>HREI-MS (m/z)</td>
<td>490.2580</td>
</tr>
<tr>
<td>Calcd for C₂₈H₃₄N₄O₄</td>
<td>490.2605</td>
</tr>
<tr>
<td>MP</td>
<td>177~182°C (dec)</td>
</tr>
<tr>
<td>[α]D₃1 (c 0.493, MeOH)</td>
<td>-110°C</td>
</tr>
<tr>
<td>UV λmax nm (log e)</td>
<td>202 (5.06), 225 (4.96), 283 (4.33), 290 (sh, 4.21), 300 (sh, 4.21)</td>
</tr>
<tr>
<td>IR (KBr) cm⁻¹</td>
<td>3480, 1680, 1630, 1570, 1510, 1230, 1190, 1170, 1110, 1090, 980, 860, 840, 710, 690</td>
</tr>
<tr>
<td>Solubility:</td>
<td></td>
</tr>
<tr>
<td>Easily soluble</td>
<td>MeOH, DMSO</td>
</tr>
<tr>
<td>Soluble</td>
<td>Acetone, CHCl₃, EtOAc</td>
</tr>
<tr>
<td>Insoluble</td>
<td>n-Hexane, H₂O</td>
</tr>
<tr>
<td>Color reaction</td>
<td>Ehrlich, FeCl₃-HClO₄</td>
</tr>
<tr>
<td>RF valueb</td>
<td>0.50</td>
</tr>
</tbody>
</table>

* Glycerol matrix.

b Silica gel TLC (Merck Art. No. 5715), CHCl₃-MeOH (8:2).

Fig. 1. Structure of cytoblastin (I), triacetylcytoblastin (II) and indolactam V (III).
active substance was eluted with the solvent ratio at 8:2. The active eluate was concentrated under a reduced pressure to give a crude powder (0.5 g) and subjected to a reverse phase HPLC (Senshu pak ODS330IN, 20 × 250 mm). It was eluted with linear gradient solution of 50 to 100% methanol in H₂O. After concentration of the active fraction, the resultant yellow powder (10 mg) was applied on Sephadex LH-20 column (MeOH). Active fraction was evaporated to dryness in vacuo. Cytoblastin was obtained as white powder (3 mg).

Physico-chemical properties of cytoblastin (I) are summarized in Table 1. The FAB-MS spectra of cytoblastin revealed that the molecular ion peaks at m/z 491 ([M + H]⁺) and m/z 489 ([M − H]⁻). The molecular formula of cytoblastin was confirmed as C₂₈H₃₄N₄O₄ by HREI-MS.

The presence of an indole moiety in cytoblastin was indicated by its UV spectrum at 225, 283 and 290 nm and positive color reaction (purple) with Ehrlich reagent on silica gel TLC. The ¹H NMR spectra of cytoblastin were measured in aceton-­³-d₆, methanol-d₄, pyridine-d₅ and acetic acid-d₄. All spectra showed the existence of two conformers changing the ratio of the mixture in these tested solvents. The ¹H NMR and UV spectra of cytoblastin resembled substances of the teleocidin group. In the ¹H NMR spectra of teleocidin de-

<table>
<thead>
<tr>
<th>Ratio³</th>
<th>Position</th>
<th>¹³C</th>
<th>¹H</th>
<th>J (Hz)</th>
<th>¹H</th>
<th>J (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:1</td>
<td>1</td>
<td>122.81</td>
<td>(~10.11) br</td>
<td>—</td>
<td>8.05 br</td>
<td>—</td>
</tr>
<tr>
<td>4:1</td>
<td>2</td>
<td>6.95 br</td>
<td>—</td>
<td>—</td>
<td>6.88 s</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>114.81</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3a</td>
<td>118.26</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>146.92</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>106.57</td>
<td>6.42 d</td>
<td>8.0</td>
<td>6.50 d</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>123.94</td>
<td>7.11 d</td>
<td>8.0</td>
<td>7.06 t</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>119.28</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>140.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>35.05</td>
<td>3.00 d, d</td>
<td>3.2, 17.0</td>
<td>3.06 dd</td>
<td>17.0, 3.0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>56.66</td>
<td>4.16 m</td>
<td>—</td>
<td>4.31 m</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>6.38 br</td>
<td>—</td>
<td>—</td>
<td>7.42 br</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>173.06</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>71.83</td>
<td>4.36 d</td>
<td>10.0</td>
<td>4.40 d</td>
<td>9.0</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>65.39</td>
<td>3.42 m</td>
<td>—</td>
<td>3.57 dd</td>
<td>8.0, 7.0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>29.19</td>
<td>3.63 m</td>
<td>—</td>
<td>3.74 dd</td>
<td>8.0, 7.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19.96</td>
<td>2.54 m</td>
<td>—</td>
<td>2.59 m</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>21.86</td>
<td>0.56 d</td>
<td>6.5</td>
<td>0.63 d</td>
<td>6.5</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>21.38</td>
<td>0.86 d</td>
<td>6.5</td>
<td>0.93 d</td>
<td>6.5</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>33.08</td>
<td>2.84 s</td>
<td>—</td>
<td>2.91 s</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>42.12</td>
<td>4.77 d</td>
<td>6.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>117.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>123.85</td>
<td>7.44 s</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22a</td>
<td>—</td>
<td>~10.1</td>
<td>br</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>117.51</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>111.98</td>
<td>7.32 d</td>
<td>8.0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>121.92</td>
<td>7.01 t</td>
<td>8.0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>119.16</td>
<td>6.86 t</td>
<td>8.0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>120.17</td>
<td>7.46 d</td>
<td>8.0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>65.82</td>
<td>3.52 m</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2. NMR data of cytoblastin and indolactam V.

³ Ratio = major conformer: minor conformer in the solution. The assignment of the major component are shown.
derivatives, Endo et al.2) reported the existence of the two stable conformational states in the solution. The \(^1\)H NMR, \(^{13}\)C NMR, \(^{1}H-^{1}H\) COSY, \(^{13}C-^{1}H\) COSY and heteronuclear multiple-bond correlation (HMBC) spectra of I in deuteracetone were analyzed to elucidate the structure of cytoblastin. The presence of indolactam V moiety in cytoblastin molecule is obvious from the NMR data (Table 2). Connectivity of the indolactam V skeleton to a side chain containing another indole moiety was established by HMBC spectroscopy: cross peaks were observed between 19-H and the following signals of C-6, C-7, C-7a, C-27, C-28, C-20, C-21, and C-26a, as shown in Fig. 2. Upon treatment with acetic anhydride and pyridine at room temperature, I gave a triacetylcytoblastin (II) (EI-MS, m/z 617 (M+1)+). The \(^1\)H NMR spectrum of II in CDCl\(_3\) showed three acetyl groups at 2.08, 2.02 and 1.94 ppm, and two set of signals corresponding to a major and a minor conformer (1.7 : 1). We propose the structure of cytoblastin as 7-[2,3-dihydroxy-1-(3-indolyl)propyl]indolactam V. Determination of the absolute structure of cytoblastin remains to be elucidated.

According to the method described previously3), the activity of cytoblastin was determined on incorporation of \(^3\)H]thymidine into nylon wool-passed rat spleen cells (T cell-rich preparation) treated with concanavalin A (Con A). Con A-treated cells were cultured with cytoblastin and pulsed with \(^3\)H]thymidine 18 hours before termination of culture. The incorporation of \(^3\)H]thymidine into cultured cells was measured by a liquid scintillation counter. The effect of cytoblastin was shown in Table 3. Cytoblastin at 0.39 to 6.25 \(\mu\)g/ml increased the incorporation but not at 25 \(\mu\)g/ml. The stimulatory index (cpm of treated/cpm of non-treated) was 2 to 6.

As described above, the structure of cytoblastin resembles to teleocidins and indolactam V, and those are known to be a tumor-promoter as well as an inflammatory agent4). To estimate the tumor-promoter activity of cytoblastin, we tested the effect of cytoblastin on the inhibition of \(^3\)H]phorbol-12,13-dibutyrate (PDBu) binding to A431 cells5) and on the translocation of protein kinase C from cytosol to membrane in A431 cells6). At the doses (0.4 ~ 1 \(\mu\)g/ml) promoting the proliferation of T cells, cytoblastin did neither inhibit PDBu binding and nor induce the translocation. Next, the inflammatory activity of cytoblastin on mouse ear skin was tested. Each dose of cytoblastin and of teleocidin B and indolactam V as control was dissolved in 10 \(\mu\)l of MeOH and put on mouse ear skin (ICR, female, 6 weeks old). After 24 hours, inflammatory response of mouse ear skin (ICR, female, 6 weeks old) with a reddened swelling was examined. Although teleocidin B and indolactam V were inflammatory at 0.2 \(\mu\)g/ear and 15 \(\mu\)g/ear, respectively, cytoblastin did not show any response up to 640 \(\mu\)g/ear. The acute toxicity (LD\(_{50}\)) of each substance by single ip injection to ICR mice (female, 6 weeks old) was as follows; > 100 mg/kg in cytoblastin, 0.25 mg/kg in teleocidin B, 1.25 mg/kg in indolactam V. These results indicate that cytoblastin has different biological properties from teleocidin B and indolactam V.

Cytoblastin at 100 \(\mu\)g/ml showed no cytotoxicity against L1210, P388, EL-4, IMC carcinoma cells and human stomach cancer cells, SC-6 and had no antimicrobial activity against bacteria and fungi.

The immunomodulating activity of cytoblastin is now under study.

Acknowledgment

We would like to thank Dr. Masaya Imoto for his
advice and encouragement. This work was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan.

HIROYUKI KUMAGAI
MASATOMI IJIMA
KAZUYUKI DOBASHI
HIROSHI NAGANAWA
TSUTOMU SAWA
MASA HAMADA
MASAAMI ISHIZUKA
TOMIO TAKEUCHI

Institute for Chemotherapy, M.C.R.F., 18-24 Motono, Miyamoto, Numazu, Shizuoka 410-03, Japan

1 Institute of Microbial Chemistry, M.C.R.F., 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received April 22, 1991)

References

