INHIBITION OF ANGIOGENESIS BY 15-DEOXYSPERGUALIN

Sir:

Angiogenesis, the formation of new blood vessels, plays an important role in several physiological and pathological conditions, including embryonic development, tumor development, diabetic retinopathy and psoriasis. Thus, treatment with angiogenesis inhibitors might be a novel strategy for managing diseases accompanied by uncontrolled angiogenesis. Previous studies have shown that medroxyprogesterone acetate inhibits the angiogenic response triggered by a rat mammary tumor induced by 7,12-dimethylbenz[a]anthracene, probably resulting in the growth inhibition of this tumor1. We have also found that an antibiotic, herbimycin A, exhibits angiogenesis-inhibitory activity, as assessed with the chick embryo chorioallantoic membrane (CAM) assay system, and have proposed that microorganisms have the ability to produce various angiogenesis inhibitors2). 15-Deoxyspergualin, an analogue of the antibiotic spergualin3), has been reported to exhibit antitumor activity and immunosuppressive effects4,5). In this study, we have examined the effect of 15-deoxyspergualin on angiogenesis in CAM of the chick embryo and have found that the antibiotic is capable of inhibiting embryonic angiogenesis in a dose-dependent manner.

Antiangiogenic activity was evaluated as described previously, except that 1% methylcellulose (20~30cps; Tokyo Kasei Co., Ltd., Tokyo) was used in place of ethylene-vinyl acetate copolymer2,6). 15-Deoxyspergualin was dissolved in saline at a concentration of 2mg/ml, sterilized by passing through a 0.2-μm filter and stored at -20°C until use. Fertilized eggs were incubated in a humidified egg incubator at 37°C for 4.5 days. The stock solution of 15-deoxyspergualin was sequentially diluted with sterile saline immediately before use and resulting dilute solutions were mixed with the chick embryo chorioallantoic membrane (CAM) assay system, and have proposed that angiogenesis inhibitors2). 15-Deoxyspergualin, an analogue of the antibiotic spergualin3), has been reported to exhibit antitumor activity and immunosuppressive effects4,5). In this study, we have examined the effect of 15-deoxyspergualin on angiogenesis in CAM of the chick embryo and have found that the antibiotic is capable of inhibiting embryonic angiogenesis in a dose-dependent manner.

Antiangiogenic activity was evaluated as described previously, except that 1% methylcellulose (20~30cps; Tokyo Kasei Co., Ltd., Tokyo) was used in place of ethylene-vinyl acetate copolymer2,6). 15-Deoxyspergualin was dissolved in saline at a concentration of 2mg/ml, sterilized by passing through a 0.2-μm filter and stored at -20°C until use. Fertilized eggs were incubated in a humidified egg incubator at 37°C for 4.5 days. The stock solution of 15-deoxyspergualin was sequentially diluted with sterile saline immediately before use and resulting dilute solutions were mixed with the chick embryo chorioallantoic membrane (CAM) assay system, and have proposed that angiogenesis inhibitors2). 15-Deoxyspergualin, an analogue of the antibiotic spergualin3), has been reported to exhibit antitumor activity and immunosuppressive effects4,5). In this study, we have examined the effect of 15-deoxyspergualin on angiogenesis in CAM of the chick embryo and have found that the antibiotic is capable of inhibiting embryonic angiogenesis in a dose-dependent manner.

The effect of 15-deoxyspergualin on embryonic angiogenesis was examined by placing 1% methylcellulose containing the required doses of the antibiotic on 4.5-day CAM. The dose-response relationship for inhibition of embryonic angiogenesis is shown in Fig. 1. 15-Deoxyspergualin inhibited angiogenesis in a dose-dependent manner. In comparison with the effect of 1% methylcellulose alone in 32 control CAMs examined, the minimum dose required for the induction of significant antiangiogenic activity (i.e., a minimum effective dose) was 10 ng (20 pmol) per egg. The dose required for half-maximal inhibition (ID50) was 480 ng (960 pmol) per egg. Examples of these experiments are shown in Fig. 2. 15-Deoxyspergualin (Fig. 2B) produced significant avascular zones, whereas 1% methylcellulose alone did not affect vascular organization in any of 32 control CAM used (Fig. 2A).

Previous studies have shown that spergualin, an

![Fig. 1. Inhibitory effect of 15-deoxyspergualin on embryonic angiogenesis.](image)
Fig. 2. Effect of 15-deoxyspergualin on angiogenesis in CAMs 2 days after sample implantation.

Samples of 1% methylcellulose alone (A) or containing 15-deoxyspergualin (B, 10 μg/egg) were implanted on the 4.5-day CAMs. An appropriate volume of a fat emulsion was injected into the 6.5-day chorialantois to show the vascular network better. Note the presence of an avascular zone (surrounded with arrows) in CAM implanted with 1% methylcellulose containing the antibiotic. Control CAMs treated with 1% methylcellulose alone show no disturbance of angiogenesis; original magnification, ×2.3.

Antitumor antibiotic isolated from the culture filtrate of Bacillus laterosporus, is a unique substance which involves both spermidine and guanidine moieties and that 15-deoxyspergualin is most effective in suppressing tumor growth among various derivatives of spergualin3,4). In this study we have demonstrated that 15-deoxyspergualin dose-dependently caused inhibition of embryonic angiogenesis and that it is active as low as 20 pmol/egg, with an ID50 value of 960 pmol/egg. As reported previously2), herbimycin A, an antibiotic produced by a strain of Streptomyces, inhibits embryonic angiogenesis, with a minimum effective dose of 170 pmol/egg and an ID50 value of 260 pmol. In addition, we have found that retinoids, including retinol (a minimum effective dose of 3,500 pmol/egg; ID50 of 4,200 pmol/egg), retinoic acid (a minimum effective dose of 170 pmol/egg; ID50 of 330 pmol/egg) and a synthetic retinoid Ch 55 (a minimum effective dose of 2.7 pmol/egg; ID50 of 22 pmol/egg), as well as 1α,25-dihydroxyvitamin D3 (a minimum effective dose of 24 pmol/egg; ID50 of 340 pmol/egg) and 22-oxa-1α,25-dihydroxyvitamin D3 (a minimum effective dose of 2.4 pmol/egg; ID50 of 96 pmol/egg) exhibit antiangiogenic activity in the CAM assay system6,7). Taken together, 15-deoxyspergualin seems to have a moderate angiogenesis-inhibitory effect. Additionally, a remarkable feature of 15-deoxyspergualin is that it has the inhibitory effect at a wide range of doses. Similarly, the antibiotic has been found to exhibit antitumor activity at a wide range of doses4). Considering these findings, it might be possible that the antitumor activity of 15-deoxyspergualin was, in part, due to the antiangiogenic activity of the antibiotic. Further experiments are in progress to determine whether 15-deoxyspergualin inhibits tumor angiogenesis and whether the antibiotic influences migration or proliferation of blood vessel endothelial cells.

Acknowledgment

This work was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science, and Culture, Japan.

TSUTOMU OIKAWA
MARIKO SHIMAMURA
HIROMI ASHINO-FUSE
TAKAO IWAGUCHI
MASAAKI ISHIZUKA
TOMIO TAKEUCHI

Division of Cancer Therapeutics, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113, Japan

aInstitute for Chemotherapy, Microbial Chemistry Research Foundation, 18-24 Aza-moton0, Miyamoto, Numazu-shi, Shizuoka 410-03, Japan

bInstitute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received April 23, 1991)

References


