KS-505a, A NOVEL INHIBITOR OF BOVINE BRAIN Ca²⁺ AND CALMODULIN-DEPENDENT CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE FROM *Streptomyces argenteolus*

SATOSHI NAKANISHI, KEIKO OSAWA, YUTAKA SAITO, ISAO KAWAMOTO, KAZUTOSHI KURODA and HIROSHI KASE

Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd.,
3-6-6 Asahimachi, Machida-shi, Tokyo 194, Japan

(Received for publication September 24, 1991)

A novel compound, KS-505a, was isolated from the culture broth of a strain identified as *Streptomyces argenteolus* A-2. The compound inhibited bovine brain Ca²⁺ and calmodulin-dependent cyclic-nucleotide phosphodiesterase with an IC₅₀ value (the concentration causing 50% inhibition) of 0.065 μM. The compound around that concentration had little or no effect on heart calmodulin-dependent and -independent cyclic-nucleotide phosphodiesterases, and protein kinase C.

The role of Ca²⁺ is widely accepted as a second messenger in various cell responses such as contraction of muscle, release of neurotransmitters and chemical mediators, secretion of hormones, cell division and proliferation, and cell motility. Evidence has been accumulating to show that many functions of intracellular Ca²⁺ are mediated by calmodulin (CaM), a ubiquitous Ca²⁺-binding protein. CaM has an ability to activate a variety of enzymes in a Ca²⁺-dependent manner. Among them is Ca²⁺ and CaM-dependent cyclic-nucleotide phosphodiesterase (CaM-PDE).

During the course of our screening work to obtain CaM inhibitors from microorganisms, we found that a novel metabolite of *Streptomyces argenteolus* A-2 inhibited CaM-PDE. The compound, designated as KS-505a, was isolated from the cultured broth, and its quite new structure was determined (Fig. 1). In this article, we describe production, isolation and some biological properties of KS-505a. Structural elucidation studies will be reported in a separate paper.

Fig. 1. Structure of KS-505a.

[Chemical structure image]

1 Present address: Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411, Japan.
Materials and Methods

Microorganism and Taxonomy

Streptomyces argenteolus A-2 (FERM BP-2065) was isolated from a soil sample collected near Lake Shinji, Yamanashi, Japan. Most of the taxonomic studies of strain A-2 were carried out in accordance with the methods adopted by the International Streptomyces Project (ISP)\(^6\). Additional media recommended by Waksman\(^7\) were also used. The colors of cultures were determined by comparing them with the color chips from the Color Harmony Manual, 4th Ed.\(^1\).

Fermentation

A 50-ml culture tube containing 10 ml of a seed medium composed of glucose 1.0%, soluble starch 1.0%, Bacto-Tryptone (Difco) 0.5%, yeast extract (Daigo Eiyo Chemicals) 0.5%, beef extract (Kyokuto Pharmaceutical Industry Ltd.) 0.3%, and CaCO\(_3\) 0.2% (pH 7.2 before sterilization) was inoculated with the mycelia of the strain grown on an agar slant. The inoculated tube was incubated for 7 days on a reciprocating shaker (300 rpm) at 28°C. 4 ml of the culture was transferred into a 300-ml Erlenmeyer flask containing 40 ml of the seed medium and the flask was incubated for 2 days on a rotary shaker (200 rpm) at 28°C. 36 ml of the second culture was further transferred into a 2-liter Erlenmeyer flask containing 360 ml of the seed medium and the flask was incubated for 2 days on a rotary shaker (200 rpm) at 28°C. Five flasks of the third culture were inoculated to a 30-liter jar fermenter containing 18 liters of a fermentation medium composed of glucose 0.5%, maltose 4.0%, 3-(7-N-morpholino)propanesulfonic acid 1%, MgSO\(_4\)·7H\(_2\)O 0.05%, soybean meal 1.5%, Pharmamedia 1.5%, and CaCO\(_3\) 0.5% (pH 7.0 before sterilization). Fermentation was carried out for 5 days at 28°C with agitation at 300 rpm, and aeration of 18 liters/minute. During isolation processes KS-505a was detected on a silica gel TLC plate (Merck, Art. No. 5715) developed with CHCl\(_3\) - MeOH - EtOH - H\(_2\)O (10 : 4 : 4 : 2) and visualized under UV-light.

Enzyme Assay

The activity of bovine brain CaM-PDE was measured as described in a previous paper\(^8\). The reaction mixture contained in a final volume of 0.5 ml, 80 mM imidazole - HCl buffer (pH 6.9), 3 mM MgSO\(_4\), 0.3 mM dithiothreitol, 100 mM NaCl, 1.2 mM cAMP, 50 \(\mu\)M CaCl\(_2\), varied concentrations of KS-505a, 26 \(\mu\)M/ml bovine brain CaM-PDE and 4 \(\mu\)M/ml CaM. The basal activity was determined using a large amount of the enzyme (18.6 \(\mu\)M/ml) to magnify the activity in the presence of 3 mM ethylene bis(oxyethylenehexanitritol)tetraacetic acid (EGTA) instead of Ca\(^{2+}\) and CaM. The activity of bovine heart CaM-PDE in the presence of Ca\(^{2+}\) and CaM was assayed at the enzyme concentration of 40 \(\mu\)M/ml. The activity of bovine heart CaM-independent cyclic-nucleotide phosphodiesterase (CaM-independent PDE) was determined in the presence of EGTA at enzyme concentration of 25 \(\mu\)M/ml. The assay conditions of protein kinase C were described previously\(^8\).

Materials

Bovine brain CaM-PDE and CaM were prepared according to the method of KAKIUCHI et al.\(^9\) with some modifications\(^8\). Protein kinase C was prepared from rat brain according to the method of KIKKAWA et al.\(^10\) with some modifications\(^8\). Bovine heart CaM-PDE and CaM-independent PDE, cAMP and 5'-nucleotidase (*Crotalus atrox* venom) were purchased from Sigma Chemical Co. All other reagents were commercially available and reagent grade.

Results

Taxonomy

The cultural characteristics of strain A-2 on various agar media are summarized in Table 1. The colors of aerial masses belonged to the gray color-series, whereas the reverse side of the growth was colorless to pale yellow (no distinctive pigments). No distinct diffusible pigment was produced except for

\(^1\) E. JACOBSON et al., Container Corporation of America, Chicago, 1958.
Table 1. Cultural characteristics of *Streptomyces argenteolus* A-2.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Growth</th>
<th>Aerial mycelium</th>
<th>Reverse side of colony</th>
<th>Diffusible pigment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose - asparagine</td>
<td>Moderate</td>
<td>Pearl (3ba)</td>
<td>Yellow tint (1ba) to cream (1(\cdot)ca)</td>
<td>None</td>
</tr>
<tr>
<td>Glycerol - asparagine</td>
<td>Moderate</td>
<td>Pearl (3ba)</td>
<td>Cream (1(\cdot)ca)</td>
<td>Light yellow</td>
</tr>
<tr>
<td>Sucrose - nitrate</td>
<td>Moderate</td>
<td>Pearl (3ba)</td>
<td>Ivory tint (2cb)</td>
<td>None</td>
</tr>
<tr>
<td>Salts - starch</td>
<td>Moderate</td>
<td>Pearl (3ba)</td>
<td>Shell (3ca)</td>
<td>None</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Moderate</td>
<td>Pearl (3ba)</td>
<td>Shell (3ca)</td>
<td>None</td>
</tr>
<tr>
<td>Nutrient</td>
<td>Moderate</td>
<td>Sand (3cb)</td>
<td>Cream (1(\cdot)ca) to bamboo (2gc)</td>
<td>None</td>
</tr>
<tr>
<td>Yeast extract -</td>
<td>Good</td>
<td>Sand (3cb)</td>
<td>Clove brown (3ni) to cinnamon (3le)</td>
<td>None</td>
</tr>
<tr>
<td>malt extract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oatmeal</td>
<td>Moderate</td>
<td>Sand (3cb)</td>
<td>Colorless</td>
<td>None</td>
</tr>
<tr>
<td>Peptone - yeast extract</td>
<td>Good</td>
<td>Natural (3dc)</td>
<td>Light amber (3ic)</td>
<td>None</td>
</tr>
<tr>
<td>Peptone - yeast extract - iron</td>
<td>Moderate</td>
<td>Pearl (3ba)</td>
<td>Bamboo (2gc) to light ivory (2ca)</td>
<td>None</td>
</tr>
</tbody>
</table>

Light yellow color in glycerol-asparagine agar. The spore chains consisting of 20 or more spores were born from aerial mycelium, and were spiral. The matured spores were spherical or oval, and 0.7 to 0.9 by 1.0 to 1.1 µm in size, with smooth surfaces. Fragmentation of the substrate mycelium, sclerotium formation, sporangium formation, and flagellated spores were not observed on any of the agar media used in this study. Good growth was observed with such carbohydrates as D-xylose, D-glucose, D-fructose, sucrose, L-rhamnose, or D-mannitol, in PRIDHAM and GOTTLEB'S basal medium, but no growth was obtained with L-arabinose, \(i\)-inositol, and raffinose. The negative physiological properties of strain A-2 included liquefaction of gelatin, peptonization and coagulation of skim milk, formation of tyrosinase, production of melanoid, and decomposition of cellulose. Starch hydrolysis was positive. The optimal growth was observed between pH 6.5 and pH 7.8, and between 28°C and 35°C. The whole cell hydrolysates contained the LL-isomer of diaminopimelic acid.

The morphological and chemotaxonomic characteristics of strain A-2 place it in the genus *Streptomyces* WAKSMAN and HENRICI. Strain A-2 was compared with the known *Streptomyces* species described in Approved Lists of Bacterial Names\(^{11}\) and in the lists of validly published names. *Streptomyces argenteolus* ATCC 11009 was closely related to strain A-2 based on the following; grayish aerial mycelium, spiral spore chains, spores with smooth surfaces, no production of melanoid and distinct diffusible pigments, and utilization pattern of carbohydrates except L-arabinose and sucrose. On the basis of these results, strain A-2 is considered to be a strain of *Streptomyces argenteolus* TRESNER et al. 1961\(^{12,13}\).
Fig. 2. Time course of KS-505a production in a 30-liter jar fermenter.

- Inhibition %, ■ pH, ▲ packed cell volume (PCV).

Fig. 3. Purification of KS-505a.

Culture broth (36 liters)
- centrifuged

Supernatant
- Diaion HP-20 column chromatography (2 liters)
 - washed with H2O, 50% MeOH, and MeOH (6 liters each)
 - eluted with 1% conc NH4OH-MeOH (10 liters)
- silica gel column chromatography
 - (Wakogel C-200, 500 ml)
 - eluted with solvent A (1.5 liters)
- silica gel column chromatography
 - (Wakogel C-200, 200 ml)
 - eluted with solvent A (600 ml)
- extracted with EtOAc (900 ml) at pH 2

Brown solid (266 mg)
- silica gel column chromatography
 - (Wakogel C-300, 50 ml)
 - eluted with solvent A (150 ml)
- silica gel column chromatography
 - (Lichroprep Si60, size B)
 - eluted with solvent A (1,000 ml) and solvent B (500 ml)

Pale yellow powder (56 mg)
- HPLC (Radial-Pak™ column packed with Nova-Pak (ODS, 4 μm))
 - eluted with MeOH-0.2 M ammonium acetate (pH 7.0) (7:3)

White powder
- dissolved in 1 N HCl
- extracted with EtOAc

KS-505a (white powder, 33 mg)
- Solvent A: CHCl3-MeOH-EtOH-H2O (10:4:4:1)
- Solvent B: CHCl3-MeOH-EtOH-H2O (10:4:4:2)

and washed with water, 50% methanol, and then methanol. The column was eluted with methanol containing 1% conc ammonia water. The eluate was concentrated in vacuo to yield a brown oil (2.7 g). The oil was applied to silica gel column chromatography, and the column was eluted with chloroform-methanol-ethanol-water (10:4:4:1, solvent A). The fractions containing KS-505a were collected and concentrated in vacuo. This chromatography step was repeated twice. The material thus obtained was suspended in 10% methanol-water, adjusted to pH 2 with 2 N HCl, and then extracted with ethyl acetate. The organic solvent layer was dried and evaporated in vacuo to yield a light brown solid. The solid was further purified by repeated silica gel column chromatography with Wakogel C-300 and Lichroprep Si60. The fractions containing KS-505a were collected and concentrated in vacuo to yield a pale yellow powder. Subsequent preparative reversed phase HPLC of this material was performed on a Radial-Pak™ column (8 × 100 mm) packed with Nova-Pak (ODS, 4 μm, Waters) using methanol-0.2 M ammonium acetate buffer (pH 7.0) (7:3) as isocratic mobile phase at the flow rate of 3.0 ml/minute. The fractions containing KS-505a were concentrated in vacuo and then freeze-dried to obtain a white powder.
Physico-chemical Properties

Physico-chemical properties of KS-505a are summarized in Table 2. The structure of KS-505a was elucidated to be 1 (Fig. 1), which equilibrated in solution to its chemically equivalent keto-carboxylic acid structure, on the basis of physico-chemical analysis and various spectral data. Details of structural elucidation studies will be described in a separate paper.

Biochemical Properties

KS-505a inhibited CaM-dependent activity of brain CaM-PDE in a dose-dependent manner with an IC$_{50}$ value of 0.065 µM. The IC$_{50}$ values of the compound for various phosphodiesterase activities are summarized in Table 3. Among four CaM-dependent and -independent activities examined, KS-505a inhibited CaM-dependent activity of brain CaM-PDE most strongly. KS-505a at 10 µM had no effect on the activity of protein kinase C.

Table 2. Physico-chemical properties of KS-505a.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>White powder</td>
</tr>
<tr>
<td>TLC, Rf</td>
<td>CHCl$_3$-MeOH-EtOH-H$_2$O (10:4:4:2)</td>
</tr>
<tr>
<td></td>
<td>CHCl$_3$-MeOH-EtOH-H$_2$O-AcOH (10:4:4:1:1)</td>
</tr>
<tr>
<td></td>
<td>CHCl$_3$-MeOH-EtOH-H$_2$O-conc NH$_4$OH (10:4:4:1:1)</td>
</tr>
<tr>
<td></td>
<td>70% MeOH</td>
</tr>
<tr>
<td>Color reaction</td>
<td>I$_2$, H$_2$SO$_4$, anisaldehyde, bromocresol green</td>
</tr>
<tr>
<td></td>
<td>Ninhydrin, FeCl$_3$, dinitrophenylhydrazine</td>
</tr>
<tr>
<td></td>
<td>Rydon-Smith, Dragendorff, anilin-phthalate</td>
</tr>
<tr>
<td></td>
<td>Indefinite (gradually decomposed)</td>
</tr>
<tr>
<td>Melting point</td>
<td>-63.5° (c 0.1, MeOH)</td>
</tr>
<tr>
<td>UV absorption, λ_{max} (log e)</td>
<td>221 (4.47), 308 (3.63)</td>
</tr>
<tr>
<td>IR (KBr, cm$^{-1}$)</td>
<td>3450, 2950, 1730, 1715, 1460, 1385, 1270, 1240, 1120,1045</td>
</tr>
</tbody>
</table>

Table 3. Effects of KS-505a on various cyclic-nucleotide phosphodiesterases.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>IC$_{50}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine brain CaM-PDE</td>
<td>0.065</td>
</tr>
<tr>
<td>Bovine heart CaM-PDE</td>
<td>>10</td>
</tr>
<tr>
<td>Bovine heart CaM-independent PDE</td>
<td>1.4</td>
</tr>
<tr>
<td>Bovine heart CaM-independent PDE</td>
<td>>10</td>
</tr>
</tbody>
</table>

a In the presence of Ca$^{2+}$ and CaM.

b In the presence of EGTA instead of Ca$^{2+}$ and CaM.
Discussion

In this paper, we demonstrate that a novel compound, KS-505a, isolated from Streptomyces argenteolus is a potent inhibitor of bovine brain CaM-PDE. The structure of KS-505a is found to be quite novel by searching Chemical Abstracts database. There has been no compound reported containing the following structural moieties of KS-505a; 2-O-methylglucuronic acid and decacyclic isoprenoid skeleton, and only a few compounds containing tautomeric aromatic γ-hydroxy-γ-lactone have been reported.

KS-505a inhibited CaM-dependent activity of brain CaM-PDE, but not its basal activity, suggesting that the compound binds to CaM or CaM binding site of the enzyme to inhibit the CaM-dependent activity. A variety of compounds have been found to inhibit CaM-dependent enzymes. These compounds include phenothiazines, naphthalenesulfonamides, alkaloids, peptides, antimycotic agents, and others. KS-505a was the most potent than calmidazorium (IC50 for brain CaM-PDE was 0.12 μM under our conditions), which was the most potent inhibitor among them.

KS-505a also inhibited bovine heart CaM-PDE. However, its IC50 value for heart enzyme was much higher than that for brain enzyme. Several investigators reported that bovine brain and heart enzymes are different molecules. The brain isozymes possess two distinct subunit molecular weights of 61 kdaltons and 63 kdaltons, whereas the heart isozyme possesses a molecular weight of 59 kdaltons. The selectivity of KS-505a for brain enzyme suggests that the compound distinguishes the structural differences between the brain enzyme and the heart enzyme.

References

16) Watanabe, K. & W. L. West: Calmodulin, activated cyclic nucleotide phosphodiesterase, microtubules, and vinca