CHEMICAL MODIFICATION OF ANTIBIOTIC STREPTONIGRIN;
SYNTHESIS AND PROPERTIES OF 2'-DECARBOXY-2'-AMINOSTREPTONIGRIN
(STREPTONIGRONE-2'-IMINE)

V. V. Tolstikov, M. N. Preobrazhenskaya,
J. Balzarini and E. De Clercq*

Institute of New Antibiotics of Russian Academy of
Medical Sciences,
Moscow 119867, Russia

Rega Institute for Medical Research,
Katholieke Universiteit Leuven,
B-3000 Leuven, Belgium

(Received for publication November 25, 1991)

Whereas the cytostatic properties of the antibiotic
streptonigrin (1) and its amides and esters have
been studied1~4), structure-activity relationships for
other derivatives of 1, as well as for derivatives of
antibiotic streptonigrone (2), which is a minor
component of the streptonigrin complex5), remain
to be investigated. In this paper we describe the
synthesis of 2-decarboxy-2-aminostreptonigrin (8),
which can be considered as an analogue of
streptonigrone.

1 was converted to the mixed anhydride (3) (1
equiv CICOOEt; 1.1 equiv Et3N; THF; 0°C; 0.5
hour), which under the action of NaN3 (3 equiv
H2O; 0°C; 1 hour) afforded, after extraction with
EtOAc, the corresponding azide (4), (IR v max
(CHCl3) cm⁻¹ 2250 (N₃), 1750 (C=O)), which was
immediately used in the next step of conversion (see
Scheme 1). All the new compounds were separated
by TLC using Kieselgel 60 (Merck) plates in
chloroform- acetone-methanol, 8 : 1 : 1 mixture.

Decomposition of 4 in anhydrous conditions (dry
toluene, reflux for 2 hours) led via streptonigrin-2'-
decarboxy-2'-isocyanate (5) to the dimer 6 (70%);
MP 164~165°C; RF 0.60; ¹H NMR (Varian VX400
instrument, 400 MHz, CDCl₃) δ 8.78 (1H, d,
J₃,₄ = 8 Hz, 4-H), 8.77 (1H, d, 4-H), 8.32 (1H, d,
3-H), 8.27 (1H, d, 3-H), 7.05 (1H, d, J₁₁',₁₂' = 8.5 Hz,
12'-H or 11'-H), 6.99 (1H, d, 12'-H or 11'-H), 6.72
(2H, s, 8'-OH, 2-groups), 6.70 (1H, d, 11'-H or
12'-H), 6.65 (1H, d, 11'-H or 12'-H), 6.00 (4H, brs,
7-NH₂, 2-groups), 5.10 (4H, brs, 5'-NH₂, 2-
groups), 4.08 (3H, s, -OCH₃), 4.07 (3H, s, -OCH₃),
3.99 (3H, s, -OCH₃), 3.98 (3H, s, -OCH₃), 3.97
(3H, s, -OCH₃), 3.95 (3H, s, -OCH₃), 2.09 (3H, s,
3'-CH₃), 2.04 (3H, s, 3'-CH₃); CI-MS (Jeol JMS-
DX 300 instrument with NH₃ as a reagent gas)
m/z 504 (3H, C₂₅H₂₂N₅O₇), 475 (3H, C₂₄H₂₁N₅O₆); EI-MS
(Varian-MAT-112 spectrometer at 210~230°C ion source and 70 eV
electron energy, samples being introduced by direct
insertion) m/z 503.1 ([M]⁺, C₂₅H₂₁N₅O₆). Dou-
bling of the signals of all protons in the ¹H NMR
spectrum of 6 demonstrates the absence of symmetry
in the dimer structure (similar to pyridyl-2-
isocyanate dimer6)).

Decomposition of 4 in boiling tert-BuOH (4
hours, evaporation, isolation by preparative TLC)
gave 2-decarboxy-2'-(tert-butoxycarbonylaminio)-
streptonigrin (7), amine 8 and dimer 6. Compound
7 was obtained in 40% yield (MP 162~164°C (dec);
RF 0.85; ¹H NMR (400 MHz, DMSO-d₆) δ 8.65 (1H,
d, J₃,₄ = 8 Hz, 4-H), 8.15 (1H, d, 3-H), 6.67 (1H, d,
J₁₁',₁₂' = 8.5 Hz, 12'-H or 11'-H), 6.45 (1H, d, 11'-H
or 12'-H), 3.71 (3H, s, -OCH₃), 3.69 (3H, s, -OCH₃),
3.67 (3H, s, -OCH₃), 1.92 (9H, s, O-(CH₂)₃), 1.86
(3H, s, 3'-CH₃)). Amine 8 was obtained in 30% yield
(MP 192~194°C; RF 0.40; ¹H NMR (400 MHz
CDCl₃) δ 8.77 (1H, d, J₃,₄ = 8 Hz, 4-H), 8.32 (1H,
d, 3-H), 6.81 (1H, d, J₁₁',₁₂' = 8.5 Hz, 12'-H), 6.63
(1H, d, 11'-H), 5.04 (2H, brs, 5'-NH₂), 4.05 (3H, s,
-OCH₃), 3.96 (3H, s, -OCH₃), 3.93 (3H, s, -OCH₃),
1.93 (3H, s, 3'-CH₃); ¹³C NMR (Varian XL 100,
100 MHz, CDCl₃) δ 179.8 (C-8), 177.1 (C-5), 161.1
(C-8a), 152.6 (C-10'), 148.4 (C-2'), 147.3 (C-8'), 143.9
(C-5'), 140.3 (C-2), 137.2 (C-7), 136.9 (C-3), 136.4
(C-9'), 132.5 (C-6), 128.3 (C-6'), 124.9 (C-4'), 125.4
(C-4a), 124.3 (C-3), 121.9 (C-12), 119.6 (C-4') 115.1
(C-7), 103.6 (C-11'), 59.8 (-OCH₃), 59.1 (-OCH₃),
54.9 (-OCH₃), 13.7 (3'-CH₃); CI-MS m/z 477 (M,
C₂₄H₂₂N₂O₆). Dimer 6 was isolated in 10% yield.

Treatment of 4 with a mixture of CF₃COOH - H₂O
(1 : 5, steam bath; 1 hour) with subsequent evap-
oration and neutralization (1.5 equiv Et₃N in
CHCl₃; 0°C; 0.5 hour), extraction with EtOAc and
washing (5% aq NaHCO₃) afforded the amine 8
in 65% yield. Amine 8 was obtained also by
cleavage of 6 in CF₃COOH-CH₂Cl₂ (1 : 1; 0°C to
20°C; 2 hours) in 80% yield. By using diphenylphos-
sphoryl azide (DPPA)⁷ for the direct conversion of
1, we prepared amine 8 in 40% yield (1.5 equiv
DPPA; 1.5 equiv Et₃N; dioxane - tert-BuOH (5 : 1);
80°C; 36 hours) (see Scheme 1). Amine 8, under the
action of 0.5m HCl in MeOH, afforded the
hydrochloride (9) (95%; MP 235°C (dec)).

The inhibitory effects of compound 8, its
hydrochloride 9 and streptonigrone 2 in comparison
Scheme 1.

\[\text{STN-COON}_3 \]

\[\text{STN-N}(\text{CH}_3)_3 \]

\[\text{STN-NH}_2 \]

Scheme 2.

\[\text{2} \]

\[\text{8} \]
Table 1. Inhibitory effects of streptonigrin (1), streptonigrone (2) and derivatives 8 and 9 on the proliferation of murine leukemia (L1210), human T-lymphoblast (MOLT-4F) and human T-lymphocyte (MT-4) cells.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Inhibition of tumor cell proliferation IC$_{50}$ * (µM/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1210</td>
</tr>
<tr>
<td>1</td>
<td>0.044±0.009</td>
</tr>
<tr>
<td>2</td>
<td>2.57±0.28</td>
</tr>
<tr>
<td>8</td>
<td>2.46±0.24</td>
</tr>
<tr>
<td>9</td>
<td>2.91±0.08</td>
</tr>
</tbody>
</table>

* 50% inhibitory concentrations, or concentrations required to inhibit cell proliferation by 50%.

with compound 1, which can be considered as 2’-imine of streptonigrone (see Scheme 2), on the proliferation of murine leukemia (L1210), human T-lymphoblast (MOLT-4F) and human T-lymphocyte (MT-4) cells are shown in the Table 1. Compounds 8 and 9 were less cytotoxic than 1, the IC$_{50}$ values for 2, 8 and 9 being similar. Compounds 8, 9 and 2 did not prove effective against HIV-1 or HIV-2 induced cytopathogenicity in MT-4 cells at subtoxic concentrations. The assays for measuring inhibition of tumor cell growth L1210, MOLT-4F, MT-4 and anti-HIV activity in MT-4 cells were performed as previously described.

Acknowledgments

In the USSR this research was supported by Grant from the All Union Anti-Aids Programm, it was also supported in part by Grant from the Belgian “Nationaal Fonds voor Wetenschappelijk Onderzoek” Project No. 7.0049.90 and by the AIDS Basic Research Programme of the European Community.

References