TETRONOTHIODIN, A NOVEL CHOLECYSTOKININ TYPE-B RECEPTOR ANTAGONIST PRODUCED BY Streptomyces sp. NR0489

II. ISOLATION, CHARACTERIZATION AND BIOLOGICAL ACTIVITIES

TATSUO OHTSUKA, HIROMICHI KOTAKI, NOBORU NAKAYAMA, YOSHIKO ITEZONO, NOBUO SHIMMA, TSUTOMU KUDOH, TOSHIKAZU KUWAHARA, MIKIO ARISAWA and KAZUTERU YOKOSE*

Nippon Roche Research Center, 200 Kajiwara, Kamakura 247, Japan

HARUO SETO

Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received for publication May 15, 1992)

A novel cholecystokinin type-B receptor antagonist named tetronothiodin has been isolated by column chromatography and preparative HPLC from the fermentation broth of Streptomyces sp. NR0489. Tetronothiodin inhibited the binding of CCK8 (C-terminal octapeptide of cholecystokinin) to rat cerebral cortex membranes (CCK type-B receptors) with an IC50 of 3.6 nM, whereas it did not inhibit CCK8 binding to rat pancreatic membranes (CCK type-A receptors). It also inhibited CCK8-induced Ca2+ mobilization in GH3 cells, a rat anterior pituitary cell line, but was without effect on the basal cytosolic Ca2+ concentration. This finding indicated tetronothiodin was an antagonist of CCK type-B receptors.

Cholecystokinin (CCK) is a hormonal regulator of pancreatic secretion10 as well as gallbladder contraction2) and gut motility3). It has also been proposed to act as a neurotransmitter in the central nervous system4). CCK type-B (CCK-B) receptors are suggested to be related to appetite5), pain6,7) and anxiety8,9). Some CCK-B receptor antagonists increased food intake5), enhanced morphine analgesia6,7) and reduced anxiety8,9) in rats. However, physiological and pharmacological roles of CCK-B receptors are not yet fully understood in part because of the shortage of potent and specific CCK-B receptor antagonists. To obtain structurally unique and specific CCK-B receptor antagonists, we screened microbial metabolites by employing a binding assay method in which rat cerebral cortex membranes and 125I labeled Bolton-Hunter CCK8 ([125I]-CCK8) were used as the receptors and the radioligand, respectively. In this screening program, we discovered a novel CCK-B receptor antagonist named tetronothiodin (1) from the culture broth of Streptomyces sp. NR0489, and determined the structure to be a macrocyclic compound containing an α-acyltetronic acid and a tetrahydrothiophene ring (Fig. 1). A preliminary communication of this work
has been reported10). Details of the taxonomy and fermentation of 1 are reported in the preceding paper11). The structural elucidation study of 1 is reported in the succeeding paper12) in detail. In the present paper, we describe the isolation, physico-chemical characterization and biological activities of 1.

Isolation

Isolation of 1 was carried out by monitoring the inhibitory activity against \(^{125}\text{I}\)-labeled Bolton-Hunter CCK\(_8\) ([\(^{125}\text{I}\)]-CCK\(_8\)) binding to rat cerebral cortex membranes. The isolation procedure of 1 is outlined in Fig. 2. After cultivation of the producing organism for ten days in 50-liter jar fermenters by the procedure described in the preceding paper11), the mycelium was removed by centrifugation. The broth supernatant (181 liters) was adjusted to pH 7 with 6 N HCl and applied to a column (12 × 100 cm) of Diaion HP-21 (Mitsubishi Chemical Industries). The column was washed with water (25 liters) and 10% aqueous acetone (50 liters), and the active principle was eluted with 50% aqueous acetone (60 liters). The active eluate was concentrated to about 15 liters under reduced pressure and extracted with ethyl acetate (25 liters × 2) at pH 2. The organic layer was dried over anhydrous sodium sulfate and concentrated to 3.5 liters under reduced pressure. This solution was back-extracted with water (1.5 liters × 2) at pH 7.5. The water layer was concentrated to 1.5 liters under reduced pressure. The concentrate was applied to a column (5 × 16 cm) of QAE Sephadex A-25 (Pharmacia Fine Chemicals) which was developed stepwise with water (1 liter) and NaCl solutions (0.2, 0.3 and 0.5 M; 3.5 liters each). The active eluate (0.3 and 0.5 M NaCl fractions) was extracted with ethyl acetate (4 liters × 2) at pH 2. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give an oily residue, which was chromatographed on a Sephadex LH-20 column (3.2 × 120 cm) developed with MeOH. The active eluate was concentrated under reduced pressure and purified by preparative HPLC over a C\(_8\) reversed-phase silica gel column (YMC-Pack, Table 1. Physico-chemical properties of 1.

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Pale brown powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>C({31})H({38})O(_8)S</td>
</tr>
<tr>
<td>FAB-MS (positive ion)</td>
<td>593 (M + Na), 609 (M + K)</td>
</tr>
<tr>
<td>HRFAB-MS</td>
<td>569.2237 (M−H)</td>
</tr>
<tr>
<td>UV (MeOH)</td>
<td>233 (29,900), 273 (12,200)</td>
</tr>
<tr>
<td>UV (MeOH-HCl)</td>
<td>234 (31,000), 271 (13,500)</td>
</tr>
<tr>
<td>IR v(max) (KBr) cm(^{-1})</td>
<td>3700~2300 (br), 1760 (sh), 1728, 1638, 1600</td>
</tr>
<tr>
<td>[(\pi)](_D)</td>
<td>-56.9° (c 1.1, MeOH)</td>
</tr>
<tr>
<td>Rf (Silica gel 60 F(_{254}))</td>
<td>0.69 (CHCl(_3) - MeOH - 28% aqueous ammonia, 4:4:1)</td>
</tr>
<tr>
<td>Solubility</td>
<td>Soluble in DMSO, MeOH, THF</td>
</tr>
<tr>
<td></td>
<td>Insoluble in hexane, ether, CHCl(_3), H(_2)O</td>
</tr>
</tbody>
</table>
30 × 250 mm; YMC Co., Ltd.) with MeOH-0.1 M phosphate buffer (pH 2.2) (6:4) at a flow rate of 43 ml/minute. The active fraction (retention time, 13 minutes) was concentrated and extracted with ethyl acetate at pH 2.5. The organic layer was concentrated to dryness under reduced pressure to give 1 (240 mg) as a pale brown powder.

Physico-chemical Characteristics

The physico-chemical properties of 1 are summarized in Table 1. The isolation procedure of 1, extraction with ethyl acetate at pH 2 and back-extraction with water at pH 7.5, indicated its acidic nature. 1 was soluble in MeOH, THF, DMSO and alkaline water but insoluble in ether, chloroform, hexane and water. 1 was positive to FeCl₃, vanillin-H₂SO₄ and iodine reactions. The free form of 1 was unstable in solution; it gradually decomposed during NMR experiments for two weeks in DMSO-d₆ or CD₃OD. Its alkaline metal salts were stable for at least five months under the same experimental conditions. The IR (Fig. 3) absorption bands at 3000~2300 and 1728 cm⁻¹ suggested the presence of a carboxylic acid. A

Fig. 3. IR spectrum (KBr) of tetronothiodin.

--- MeOH, --- MeOH · NaOH, ----- MeOH · HCl.

Fig. 4. UV spectrum of tetronothiodin.
The γ-lactone function was also suggested by the shoulder band at 1760 cm\(^{-1}\) (KBr), which clearly separated from a large carbonyl band (1728 cm\(^{-1}\)) in THF. The UV spectrum (Fig. 4) in MeOH showed absorption maxima at 233 and 273 nm and hypochromic effect was observed in acidic methanol. These absorption maxima were attributable to an α-acyl tetronic acid chromophore\(^{13,14}\) with the former absorption maximum being partly due to a diene chromophore. The molecular formula (C\(_{31}\)H\(_{38}\)O\(_{8}\)S) determination was based on positive ion FAB-MS and negative ion HRFAB-MS data [569.2237, calcd for (M−H, C\(_{31}\)H\(_{37}\)O\(_{8}\)S)\(^−\) 569.2210]. The molecular formula was supported by the analyses of the \(^1\)H NMR spectrum (Fig. 5) and the \(^{13}\)C NMR spectrum (Fig. 6) showing 31 carbon signals, and by qualitative analysis for sulfur\(^{15}\). These physico-chemical properties indicated that the structure of 1 was different from known CCK receptor antagonists of microbial origin such as virginiamycin M\(_1\) analogues\(^{16}\), anthramycin\(^{17}\) and asperlicin\(^{18}\). The chromophore, α-acyl tetronic acid, is commonly contained in some antibiotics such as kijanimicin\(^{13}\), tetrocarcins\(^{14}\) and MM 46115\(^{19}\). However 1 was different from these antibiotics in terms of containing a sulfur atom in the molecule.

Biological Activities

The inhibitory activities against the binding of \([^{125}\text{I}]-\text{CCK}_8\) to CCK-A and CCK-B receptors were observed by the following procedures. Test samples were incubated at 23°C with \([^{125}\text{I}]-\text{CCK}_8\) and rat pancreatic membranes (CCK-A receptors) or rat cerebral cortex membranes (CCK-B receptors) in a

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC(_{50}) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCK-A</td>
</tr>
<tr>
<td>Tetronothiodin (1)</td>
<td>>100,000</td>
</tr>
<tr>
<td>L-365,260</td>
<td>2,700</td>
</tr>
<tr>
<td>Cl-988</td>
<td>Not done</td>
</tr>
<tr>
<td>CCK(_8)</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Fig. 5. 400 MHz \(^1\)H NMR spectrum of the potassium salt of tetronothiodin in D\(_2\)O.

Fig. 6. 100 MHz \(^{13}\)C NMR spectrum of the potassium salt of tetronothiodin in D\(_2\)O.
10 mM 2-(N-morpholino)ethanesulfonate buffer (pH 6.5) containing NaCl 130 mM, MgCl₂ 5 mM, bacitracin 0.02% and bovine serum albumin (0.2% and 0% for CCK-A and CCK-B receptors, respectively). After equilibrium was reached (120 minutes for CCK-A receptors or 20 minutes for CCK-B receptors), each mixture was filtered by a Durapore HVLP filter and the radioactivity of the filter was counted by an autorgamma counter.

1 inhibited the binding of [¹²⁵I]-CCK₈ to CCK-B receptors on rat cerebral cortex membranes in a concentration dependent manner with an IC₅₀ of 3.6 nM (Table 2). The affinity to CCK-B receptors of 1 was three or four times more potent than those of L-365,260 or CI-988 known as potent and selective CCK-B receptor antagonists, and only three times less potent than the natural ligand CCK₈ (IC₅₀ = 1.2 nM). However 1 did not inhibit the binding of [¹²⁵I]-CCK₈ to rat pancreatic membranes (CCK-A receptors).

The ratio of the affinity for CCK-A to CCK-B receptors of 1 was more than 27,000, which was 90-fold greater than the -A and -B affinity ratio of L-365,260 (300). 1 was thus revealed to be a highly selective binding inhibitor of CCK-B receptors.

GH3 cells were reported to express CCK-B receptors. This fact was corroborated by our results that 1 inhibited CCK₈ binding to GH3 cells with an IC₅₀ of 4.2 nM, which was of the same order as that for brain CCK-B receptors. It had also been demonstrated that the intracellular Ca²⁺ concentration ([Ca²⁺]ᵢ) in GH3 cells was increased by CCK₈ in a concentration dependent manner at 1 to 1,000 nM using the Fura-2 method. CCK₈ (100 nM) transiently increased [Ca²⁺]ᵢ from 448 nM (basal level) to 739 nM. This stimulation caused by 100 nM CCK₈ was 97% of the maximum stimulation obtained by the treatment with 1 μM CCK₈. The effect of 1 to this Ca²⁺ mobilization was investigated by measuring [Ca²⁺]ᵢ in GH3 cells. When GH3 cells were treated with 1 (1 μM) one minute prior to the treatment of 100 nM CCK₈ which induced a submaximum increase of [Ca²⁺]ᵢ, 1 inhibited this increase completely without affecting the basal level. This inhibitory activity was concentration dependent. At the concentration of 50 nM of CCK₈ which causes about 80% stimulation of the maximum [Ca²⁺]ᵢ increase, pretreatments of GH3 cells with 1, 10, 100, and 1,000 nM of 1 inhibited the [Ca²⁺]ᵢ increase by 12, 55, 70 and 93%, respectively. The IC₅₀ against the increase of [Ca²⁺]ᵢ induced by 50 nM CCK₈ was 26 nM. These results indicate that 1 acted as an antagonist of CCK-B receptors on GH3 cells.

1, at concentrations up to 9 μM, did not show cell growth inhibitory activity against HeLa cells. 1 was inactive against bacteria (Bacillus subtilis, Micrococcus luteus and Escherichia coli) and fungi (Candida albicans, Aspergillus fumigatus, Trichophyton mentagrophytes and Pyricularia oryzae) at concentrations up to 450 μM.

Discussion

The structure of 1 is completely different from natural CCK-B receptor antagonists (virginiamycin M₁ analogues and anthramycin produced by Streptomyces sp.) and a CCK type-A receptor antagonist (asperlicin produced by Aspergillus alliaceus) of microbial origin. It is also different from the other CCK antagonists: (1) cyclic nucleotides (dibutyryl cyclic GMP), (2) amino acids (proglumide, lorglumide andloxiglumide), (3) partial sequences and derivatives of the C-terminal heptapeptides of CCK (CCK-JMV-180), (4) benzodiazepines (devazepide and L-365,260) and (5) nonpeptide “peptoids” derived from fragments in the CCK molecule (CI-988). 1 is structurally related to some antibiotics such as kijanimicin, tetrocarcins and MM 46115 in terms of the macrocyclic molecule containing an α-acytetylic acid chromophore. In contrast to these antibiotics, 1 is inactive against Bacillus subtilis and Micrococcus luteus.

A CCK-B receptor antagonist, L-365,260, increased food intake in rats. An anxiolytic activity and
enhancement of morphine analgesia6-7 by CCK-B receptor antagonists in rats were also demonstrated by L-365,260 and CI-988. The possibility of clinical application of CCK-B receptor antagonists was suggested by these studies. However, physiological and pharmacological roles of CCK-B receptors are not yet fully understood partly because of the shortage of potent and specific CCK-B receptor antagonists. I is a novel, potent and highly selective CCK-B receptor antagonist. It will be a useful tool for the investigation of the physiological and pharmacological roles of CCK-B receptors. Full details of the biological activities will be reported elsewhere25).

Acknowledgments

The authors thank Dr. Imhof of F. Hoffmann-La Roche Research Center for kindly providing samples of L-365,260 and CI-988.

References

properties. J. Antibiotics 38: 1633–1637, 1985

