A FAMILY OF CYCLOPHELLITOL ANALOGS: SYNTHESIS AND EVALUATION

Sir:

Cyclophellitol (1) was isolated from culture filtrates of mushroom, *Phellinus* sp.\(^1\), and found to be a highly specific and effective irreversible inactivator of \(\beta\)-glucosidases\(^2,3\). It is generally believed that the flattened half-chair conformation of the glycosyl intermediate is important for transition state binding by the enzyme\(^4,5\). The ground-state conformation of cyclophellitol (1) resembles the flattened half-chair conformation. Therefore, it is anticipated that the cyclophellitol analogs would have a variety of glycosidase-inhibitory activities. Recently, we have synthesized \(\beta,\beta\)-epi-cyclophellitol (2)\(^6,7\), the \(\alpha\)-manno type analog 3\(^8\), and the aziridine analog 4\(^9\) (7-azabicyclo[4.1.0]heptane derivative), together with cyclophellitol (1) itself\(^7,9\). In a limited inhibitory activity study\(^6~9\), it was shown that the glycoside-cleaving enzymes recognized the configurations of these compounds. It is noteworthy that the aziridine analog 4 showed a high inhibitory activity against almond \(\beta\)-glucosidase of IC\(_{50}\) 0.22 \(\mu\)g/ml\(^9\). To better understand the structure-inhibition relationship, we synthesized another aziridine analog 5, the thiirane analogs 6 and 7, the \(N\)-alkyl aziridine analogs 8~10, and the \(N\)-acyl aziridine analog 11. A preliminary glucosidase inhibitory activity study was also performed.

The synthesis of 5 began with natural cyclophellitol (1) according to the same procedures used for the synthesis of 4\(^9\). Cyclophellitol (1) was benzylated with BnBr and NaH in DMF at 25°C for 0.5 hour to give the tetra-O-benzyl derivative 12 in 90% yield. Treatment of 12 with NaN\(_3\) in DMF (110°C, 12 hours) afforded 13 and 14 in 27% and 41% yield, respectively: 13: \([\alpha]_D^{25} +15^\circ\) (c 0.34, CHCl\(_3\)); \(^1\)H NMR (270 MHz, CDCl\(_3\)) \(\delta\) 1.90 (1H, m, 5-H\(^*\)), 4.02 (1H, s, OH); Anal Calcd for C\(_{32}\)H\(_{34}\)N\(_2\)O\(_5\): C 72.52, H 6.43, N 7.25. Found: C 72.92, H 6.97, N 6.86. 14: \([\alpha]_D^{25} -2.4^\circ\) (c 0.76, CHCl\(_3\)); \(^1\)H NMR (270 MHz, CDCl\(_3\)) \(\delta\) 1.48 (1H, dddd, \(J_{5,8} = J_{5,6} = 10.8\) Hz, \(J_{5,8} = J_{5,6} = 2.0\) Hz, 5-H\(^*\)), 2.51 (1H, d, \(J = 2.0\) Hz, OH), 3.49 (1H, ddd, \(J_{1,2} = J_{1,6} = 9.8\) Hz, 1-H), 3.70 (1H, ddd, d, 6-H; Anal Calcd for C\(_{32}\)H\(_{34}\)N\(_2\)O\(_5\): C 72.52, H 6.43, N 7.25. Found: C 72.59, H 6.31, N 7.03. The \(^1\)H NMR spectrum of 14 clearly indicated \(J_{1,2} = J_{1,6} = 9.8\) Hz, \(J_{5,6} = 10.8\) Hz) that the C-1 hydroxyl group and the C-6 azide group of 14 are oriented equatorially. Since the one-step procedure (Ph\(_3\)P, toluene, 110°C, 0.5 hour)\(^9\) to obtain the aziridine 15 from a mixture of 13 and 14 did not succeed, a three-step procedure was necessary for this transformation: i) MsCl, pyridine, 25°C, 12 hours, ii) Ph\(_3\)P, THF, 25°C, 0.5 hour, then H\(_2\)O, 25°C, 12 hours, iii) NaOMe, MeOH, 25°C, 1.5 hours, 40% overall yield. Finally, de-O-benzylation of 15 (Li, liq NH\(_3\), ether, -78°C, 1 hour) afforded the aziridine analog 5 in 60% yield: \([\alpha]_D^{25} +28^\circ\) (c 0.12, H\(_2\)O); \(^1\)H NMR (270 MHz, D\(_2\)O, DOH = 4.80) \(\delta\) 1.94 (1H, m, 5-H), 2.41 (1H,
The thiirane analogs 6 and 7 were prepared as follows. 1,6-epi-Cyclophellitol (2) was protected as its tetra-O-methoxybenzyl ether 16 in 60% yield by treatment with 4-methoxybenzyl (MPM) chloride and NaH in DMF at 25°C for 20 hours. Thiirane formation was realized by treatment of 16 with Ph3P=S and trifluoroacetic acid in benzene at 60°C for 48 hours to give 17 in 52% yield: [α]D +73° (c 0.18, CHCl3); 1H NMR (270MHz, CDCl3) δ 3.17 (1H, d, J1,6=6.2Hz, J1,2=0Hz, 1-H), 3.57 (1H, dd, J5,6=4.0Hz, 6-H); Anal Calcd for C39H44O8S: C 69.62, H 6.59. Found: C 69.55, H 6.45. It was assumed by the proposed reaction mechanism that the Cl- and the C6-configurations were inverted under these conditions. Finally, de-0-methoxybenzylation of 17 (DDQ, CH2Cl2-MeOH-H2O, 25°C, 12 hours) afforded the thiirane analog 6 in 65% yield: [α]D5 +110° (c 0.16, MeOH); 1H NMR (270MHz, CD3OD) δ 3.31 (1H, dd, J1,6=6.0Hz, J1,2=0Hz, 1-H), 3.49 (1H, dd, J5,6=8.4Hz, 6-H), 3.69 (1H, dd, J5,8=10.8Hz, 8-H), 3.89 (1H, dd, J5,8=10.8Hz, 8'-H). In an analogous fashion, cyclophellitol (1) was transformed to 7 via 18 in 20% overall yield: 18: 1H NMR (270MHz, CDCl3) δ 3.08 (1H, dd, J1,6=6.8Hz, J5,6=2.0Hz, 6-H), 3.33 (1H, dd, J1,2=3.8Hz, 1-H), 3.77, 3.78, 3.80, 3.82 (each 3H, each s, 4 × OMe). 7: [α]D5 +128° (c 0.12, MeOH); 1H NMR (270 MHz, CD3OD) δ 1.62 (1H, d, J1,6=6.4Hz, J1,2=0Hz, 1-H), 1.89 (1H, m, 5-H), 1.99 (1H, dd, J5,6=3.2Hz, 6-H), 2.33 (3H, s, NMe), 2.97 (1H, dd, J3,4=J5,6=10.0Hz, 4-H), 3.08 (1H, dd, J5,6=8.0Hz, 3-H), 3.57 (1H, d, 2-H), 3.62 (1H, dd, J1,6=6.6Hz, J1,2=0Hz, 1-H), 3.15-3.25 (2H, m, 3- and 4-H), 3.52 (1H, dd, J5,6=4.0Hz, 6-H), 3.56 (1H, dd, J5,6=10.4Hz, 6-H), 3.98 (1H, dd, J5,8=9.0Hz, 8-H), 3.98 (1H, dd, J5,8=9.0Hz, 8-H). In an analogous fashion, cyclophellitol (1) was transformed to 7 via 18 in 20% overall yield: 18: 1H NMR (270MHz, CDCl3) δ 3.08 (1H, dd, J1,6=6.8Hz, J5,6=2.0Hz, 1-H), 3.77, 3.78, 3.80, 3.82 (each 3H, each s, 4 × OMe). 7: [α]D5 +128° (c 0.12, MeOH); 1H NMR (270 MHz, CD3OD) δ 1.62 (1H, d, J1,6=6.4Hz, J1,2=0Hz, 1-H), 1.89 (1H, m, 5-H), 1.99 (1H, dd, J5,6=3.2Hz, 6-H), 2.33 (3H, s, NMe), 2.97 (1H, dd, J3,4=J5,6=10.0Hz, 4-H), 3.08 (1H, dd, J5,6=8.0Hz, 3-H), 3.57 (1H, d, 2-H), 3.62 (1H, dd, J1,6=6.6Hz, J1,2=0Hz, 1-H), 3.15-3.25 (2H, m, 3- and 4-H), 3.52 (1H, dd, J5,6=4.0Hz, 6-H), 3.56 (1H, dd, J5,6=10.4Hz, 6-H), 3.98 (1H, dd, J5,8=9.0Hz, 8-H), 3.98 (1H, dd, J5,8=9.0Hz, 8-H). In an analogous fashion, cyclophellitol (1) was transformed to 7 via 18 in 20% overall yield: 18: 1H NMR (270MHz, CDCl3) δ 3.08 (1H, dd, J1,6=6.8Hz, J5,6=2.0Hz, 1-H), 3.77, 3.78, 3.80, 3.82 (each 3H, each s, 4 × OMe). 7: [α]D5 +128° (c 0.12, MeOH); 1H NMR (270 MHz, CD3OD) δ 1.62 (1H, d, J1,6=6.4Hz, J1,2=0Hz, 1-H), 1.89 (1H, m, 5-H), 1.99 (1H, dd, J5,6=3.2Hz, 6-H), 2.33 (3H, s, NMe), 2.97 (1H, dd, J3,4=J5,6=10.0Hz, 4-H), 3.08 (1H, dd, J5,6=8.0Hz, 3-H), 3.57 (1H, d, 2-H), 3.62 (1H, dd, J1,6=6.6Hz, J1,2=0Hz, 1-H), 3.15-3.25 (2H, m, 3- and 4-H), 3.52 (1H, dd, J5,6=4.0Hz, 6-H), 3.56 (1H, dd, J5,6=10.4Hz, 6-H), 3.98 (1H, dd, J5,8=9.0Hz, 8-H), 3.98 (1H, dd, J5,8=9.0Hz, 8-H). In an analogous fashion, cyclophellitol (1) was transformed to 7 via 18 in 20% overall yield: 18: 1H NMR (270MHz, CDCl3) δ 3.08 (1H, dd, J1,6=6.8Hz, J5,6=2.0Hz, 1-H), 3.77, 3.78, 3.80, 3.82 (each 3H, each s, 4 × OMe). 7: [α]D5 +128° (c 0.12, MeOH); 1H NMR (270 MHz, CD3OD) δ 1.62 (1H, d, J1,6=6.4Hz, J1,2=0Hz, 1-H), 1.89 (1H, m, 5-H), 1.99 (1H, dd, J5,6=3.2Hz, 6-H), 2.33 (3H, s, NMe), 2.97 (1H, dd, J3,4=J5,6=10.0Hz, 4-H), 3.08 (1H, dd, J5,6=8.0Hz, 3-H), 3.57 (1H, d, 2-H), 3.62 (1H, dd, J1,6=6.6Hz, J1,2=0Hz, 1-H), 3.15-3.25 (2H, m, 3- and 4-H), 3.52 (1H, dd, J5,6=4.0Hz, 6-H), 3.56 (1H, dd, J5,6=10.4Hz, 6-H), 3.98 (1H, dd, J5,8=9.0Hz, 8-H), 3.98 (1H, dd, J5,8=9.0Hz, 8-H).
Table 1. Glucosidase inhibitory activities of 5~11. [IC50 (µg/ml) (1% at 100 µg/ml in parentheses)].

<table>
<thead>
<tr>
<th>Enzyme tested</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Glucosidase</td>
<td>32</td>
<td>(84)</td>
<td>(2)a</td>
<td>(8)</td>
<td>(82)</td>
<td>(18)</td>
<td>(98)</td>
</tr>
<tr>
<td>(almond)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Glucosidase</td>
<td>(12)</td>
<td>(44)</td>
<td>(55)</td>
<td>(46)</td>
<td>(38)</td>
<td>(20)</td>
<td>(66)</td>
</tr>
<tr>
<td>(baker yeast)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a 30 µg/ml.
b 10 µg/ml.

2-H), 3.61 (1H, dd, \(J_{\text{gem}} = 10.0\) Hz, 8-H), 3.99 (1H, dd, \(J_{S_5, 8} = 4.0\) Hz, 8'-H), 10: \([\alpha]_D^{20} + 65^\circ\) (c 0.33, MeOH); \(^1\)H NMR (270 MHz, CD3OD) \(\delta 0.94\) (3H, t, \(J = 7.0\) Hz, Me), 1.36, 1.56 (each 2H, each m, CH2CH2), 1.64 (1H, d, \(J_{1,6} = 6.4\) Hz, \(J_{1,2} = 0\) Hz, 1-H), 1.88 (1H, m, 5-H), 1.98 (1H, dd, \(J_{5,6} = 3.2\) Hz, 6-H), 2.16, 2.34 (each 1H, each m, NCH2), 3.02 (1H, dd, \(J_{3,4} = J_{4,5} = 10.0\) Hz, 4-H), 3.10 (1H, dd, \(J_{5,6} = 8.0\) Hz, 3-H), 3.58 (1H, d, 2-H), 3.62 (1H, dd, \(J_{\text{gem}} = 10.0\) Hz, 8-H), 3.99 (1H, dd, \(J_{S_5, 8} = 4.6\) Hz, 8'-H). The N-butyryl analog 11 was directly prepared from 4 by treatment with butyryl chloride and triethylamine in MeOH at 25°C for 15 minutes in 65% yield: \([\alpha]_D^{20} + 56^\circ\) (c 0.26, MeOH); \(^1\)H NMR (270 MHz, D2O, DOH = 4.80) \(\delta 0.91\) (3H, t, \(J = 7.0\) Hz, Me), 1.62 (2H, sextet, \(J = 7.0\) Hz, CH2), 2.08 (1H, m, 5-H), 2.50 (2H, t, \(J = 7.0\) Hz, COCH2), 2.86 (1H, d, \(J_{5,6} = 6.4\) Hz, \(J_{1,2} = 0\) Hz, 1-H), 3.17 (1H, dd, \(J_{3,4} = J_{4,5} = 10.4\) Hz, 4-H), 3.21 (1H, dd, \(J_{S_5, 8} = 10.4\) Hz, 8-H), 3.34 (1H, dd, \(J_{3,4} = J_{4,5} = 8.4\) Hz, 3-H), 3.76 (1H, dd, \(J_{\text{gem}} = 11.0\) Hz, \(J_{S_5, 8} = 8.4\) Hz, 8-H), 3.81 (1H, d, 2-H), 4.04 (1H, dd, \(J_{S_5, 8} = 4.4\) Hz, 8'-H).

The glycosidase inhibitory activities of 5~11 were generally assayed according to the method reported by SAUL et al.\(^{12}\) and are shown in Table 1. The previous evaluation\(^6~9\) of 1, 2, 3 and 4 revealed that the glycoside-cleaving enzymes recognized the configurations of these compounds including the epoxide and the aziridine configurations. On the contrary, the new aziridine analog 5 showed inhibitory activity only against almond \(\beta\)-glucosidase with an IC50 of 32 µg/ml (indeed, 5 was a weak inhibitor of baker yeast \(\alpha\)-glucosidase, \textit{Escherichia coli} \(\beta\)-galactosidase, and jack bean \(\alpha\)-mannosidase, data not shown). These findings reflect that the inhibition mechanisms of the epoxide and the aziridine analogs are different. Neither the thirane analog 6 nor 7 showed significant activities. Various \(N\)-alkyl derivatives of 1-deoxy-1-nojirimycin were shown to have different inhibition properties, especially anti-HIV activity\(^{13}\). Among 8, 9 and 10, the \(N\)-butyl aziridine analog 10 is a better almond \(\beta\)-glucosidase inhibitor (IC50 1.3 µg/ml) than the \(N\)-methyl and \(N\)-ethyl derivatives. Furthermore, the \(N\)-butyryl analog 11 showed inhibitory activity against almond \(\beta\)-glucosidase of IC50 0.3 µg/ml. These results suggest that the \(N\)-substituent may play a key role for inhibition. Further study along this line is now in progress.

Acknowledgments

We are grateful to the Institute of Microbial Chemistry for the generous support of our program. We thank Professor KAZUO UMEZAWA, Keio University, for enzyme assays of 6~11 and Pharmaceutical Research Laboratories, Meiji Seika Kaisha, Ltd. for those of 5. Financial support by CIBA-GEIGY Foundation (Japan) for the Promotion of Science is gratefully acknowledged.

MASAYA NAKATA
CHU CHONG
YOSHIIISA NIWATA
KAZUNOBU TOSHIKA
KUNIKA TATSUTA\(^{11}\)

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

(Received July 22, 1993)

References

2) ATSUMI, S.; H. INUMA, C. NOSAKA & K. UMEZAWA:

\(^{11}\) Present address: Department of Pure and Applied Chemistry, Graduate School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169, Japan

