NOVEL Candida albicans ASPARTYL PROTEASE INHIBITOR. II. A NEW PEPSTATIN-AHPATININ GROUP INHIBITOR, YF-044P-D

Tsutomu Sato, Mitsuyoshi Shibazaki, Hiroshi Yamaguchi and Kenji Abe
Drug Serendipity Research Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 1-1-8 Azusawa, Itabashi-ku, Tokyo 174, Japan

Hisao Matsumoto and Minoru Shimizu
Molecular Chemistry Research Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba City, Ibaraki 305, Japan

(Received for publication December 6, 1993)

Pepstatin A\(^1,2\), an aspartyl protease inhibitor, is a potent new type of antifungal antibiotic\(^3\). However, it is not clinically used because it is metabolized in the liver and rapidly cleared from the blood\(^4\). As a result of our screening program for the search of Candida albicans aspartyl protease inhibitors, we reported on the new inhibitors, YF-0200R-A and B in a preceding paper\(^5\). Subsequently we have isolated a new highly potent inhibitor, YF-044P-D (Fig. 1) which is produced by Streptomyces sp. YF-044P together with ahpatinin E, F and G\(^6\). In this paper, we describe the fermentation conditions for YF-044P-D production, isolation procedure, physico-chemical properties, structural elucidation and biological activity of YF-044P-D. The producing strain was isolated from a soil sample collected at Hatoma island in Okinawa prefecture, Japan. YF-044P-D is an acidic compound of pepstatin-ahpatinin group.

A loopful spores of the strain was inoculated into a 500-ml Erlenmeyer flask containing 100 ml medium composed of glucose 1.0%, potato starch 2.0%, yeast extract 0.5%, peptone 0.5% and CaCO\(_3\) 0.4%, pH 7.0 before sterilization. The flask was incubated at 28°C for 3 days on a rotary shaker. Three ml of the culture broth was transferred into 500-ml Erlenmeyer flasks containing 100 ml of fermentation medium composed of glucose 3.0%, dextrin 3.0%, defatted soybean meal 1.5%, roasted wheat germ 1.5%, K\(_2\)HPO\(_4\) 0.06%, KH\(_2\)PO\(_4\) 0.025% and CoCl\(_2\)-6H\(_2\)O 0.0004%, pH 7.0 before sterilization. The fermentation was carried out at 28°C for 4 days.

The culture broth (20 liters) was adjusted to pH 3.0 with 4N HCl and filtered. YF-044P-D was extracted from the broth filtrate and mycelia with ethylacetate (EtOAc). Both EtOAc extracts were combined, concentrated in vacuo and fractionated by silica gel column chromatography. YF-044P-D was finally purified by preparative reverse phase HPLC and obtained as a white powder (2.2 mg) together with ahpatinin E (0.6 mg), F (0.7 mg) and G (1.5 mg). The isolation procedure and physico-chemical properties are summarized in Fig. 2 and Table 1, respectively.

By the IR and NMR spectra, one ester bond and...
five amido bonds were suggested (1710, 1640 and 1550 cm⁻¹ in the IR spectrum, δ 177.2, 175.5, 172.0, 170.6, 170.6, 170.5 and 170.3 ppm in the ¹³C NMR spectrum in DMSO-d₆, δ 8.14; 1H, 7.85; 2H, 7.63; 1H, 7.58 ppm; 1H in the ¹H NMR spectrum). Two oximethines (δ 67.6 and 67.4 ppm in the ¹³C NMR spectrum, δ 4.12~4.22; 3H, 3.88~3.97 ppm; 4H in the ¹H NMR spectrum, together with five α methines), three phenyl groups and five methyl groups (δ 7.15~7.26; 15H, 1.10; 3H and 0.71~0.85 ppm; 12H in the ¹H NMR spectrum) were also suggested by the NMR spectra. Taking the negativity of the Ninhydrin color reaction into account, YF-044P-D was considered to belong to the pepstatin-ahpatinin group. Its molecular weight was determined to be 787 by FAB-MS of YF-044P-D and its methyl ester. The FAB MS-MS spectrum of YF-044P-D methyl ester was measured and compared with that of pepstatin A methyl ester. The amino acid sequence was determined from the N terminal to be N-acylamino acid, valine, 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA) whose 3-hydroxy position was assured by the fragmentation in EI-MS⁶), alanine and AHPPA by peaks of m/z 218, 317, 508 and 579. The fragmentation pattern is shown in Fig. 3. Acid degradation was carried out to determine the N terminal amino acid and acyl group. After degradation with 6 N HCl at

![Fig. 2. Purification procedure of YF-044P-D.](image)

Table 1. Physico-chemical properties of YF-044P-D.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>C₄₃H₅₇N₅O₉</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>787</td>
</tr>
<tr>
<td>UV λ_max (nm)</td>
<td>203, 228 (sh)</td>
</tr>
<tr>
<td>IR ν_max cm</td>
<td>3400, 3280, 2930, 1710, 1640, 1550, 1450, 1380, 1100</td>
</tr>
<tr>
<td>¹H NMR δ ppm (in DMSO-d₆)</td>
<td>0.710.85; 12H, 1.10; 3H, 1.48; 2H, 1.871.93; 2H, 2.17; 2H, 2.64; 2H, 2.762.83; 2H, 3.443.57; 2H, 3.33; 3H, 3.883.97; 4H, 4.124.22; 3H, 7.15~7.26; 15H, 7.58; 1H, 7.63; 1H, 7.85; 2H, 8.14; 1H</td>
</tr>
<tr>
<td>[α]D²⁵ (c 0.1, MeOH)</td>
<td>-24.5</td>
</tr>
<tr>
<td>RP³ (silica gel plate 60F₂₅₄)</td>
<td>0.61</td>
</tr>
<tr>
<td>Rf⁴ HPLC (minutes)</td>
<td>6.20</td>
</tr>
<tr>
<td>Solubility (soluble in)</td>
<td>MeOH, EtOAc, CHCl₃</td>
</tr>
</tbody>
</table>

(x) CHCl₃-MeOH (1:2).
³ (Luxorbosphere C-18, 3.9 i.d. x 150 mm, 67.7% MeOH (0.01% AcOH), 1 ml/minute).

![Fig. 3. Fragmentation of YF-044P-D methyl ester in the FAB MS-MS spectrum.](image)

* Detected in the EI-MS spectrum.
110°C for 20 hours, phenylacetic acid was detected from the EtOAc extract of the degradation mixture in GC-MS with DB-1, J & W Scientific, as a column. Two moles of valine and 1 mole of alanine were detected as known amino acids in the amino acid analysis with HPLC. As a result, the N terminal amino acid is valine and the acyl group is the phenylacetyl group. Valine and alanine are determined as L form by HPLC after reaction with Marfey’s reagent. The structure of YF-044P-D is shown in Fig. 1.

Inhibitory activity of YF-044P-D against Candida albicans aspartyl protease was measured in the same way as that of YF-0200R-A and B. The IC₅₀ values of YF-044P-D, ahpatinin E, F and G are 6.4 × 10⁻⁷ M, 6.8 × 10⁻⁷ M, 8.1 × 10⁻⁷ M and 6.5 × 10⁻⁷ M, respectively. YF-044P-D showed much stronger inhibitory activity than YF-0200R-A and B, but it showed almost equal activity to that of ahpatinin E, F and G. Among another aspartyl proteases, YF-044P-D showed the strongest inhibitory activity against cathepsin D (cathepsin D; bovine spleen, purchased from Sigma; Candida albicans aspartyl protease, partially purified in our laboratory; pepsin; porcine stomach mucosa, Sigma) (data not shown).

Acknowledgments

We wish to thank Mr. Shigeru Miyazaki for fermentation support and Mrs. Kimio Nakamura for technical assistance in biological tests.

References