SYNTHESIS AND ANTICANDIDAL ACTIVITIES OF OPTIMIZED ANALOGS OF ANTIBIOTIC Sch 37137

RYSZARD ANDRUSZKIEWICZ*, TERESA ZIENIAWA, HENRYK CHMARA,
LESZEK KASPRZAK and EDWARD BOROWSKI

Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk,
80-952 Gdańsk, Poland

(Received for publication November 24, 1993)

Peptide analogues of Sch 37137 the antifungal antibiotic have been synthesized and evaluated in vitro against Candida sp. Di- and tripeptides containing methionine, leucine, norvaline, lysine, glutamic acid and N3-(trans-epoxysuccinamoyl)-L-2,3-diaminopropanoic acid, (EADP) were obtained. Peptides containing (d)-, and (l)-trans-epoxysuccinamic acid were also prepared. All of the analogues examined displayed in general higher anticandidal activity than a mixture of diastereomers of Sch 37137.

Fungal infections caused mainly by Candida albicans have increased rapidly in the last decades especially in immunocompromised patients such as patients with AIDS, organ transplant recipients, cancer patients undergoing chemotherapy and can cause secondary infections that are life threatening1~4. Unfortunately, antifungal drugs currently released for clinical use have not offered substantive improvements over amphotericin B, still the drug of choice for most fungal diseases5. Therefore, there is still a need for new, safer and more potent antifungal agents.

Fungal cell wall biosynthesis can provide important targets for antifungal agents6. Glucosamine-6-phosphate synthase, an enzyme which enables the biosynthetic formation of glucosamine containing macromolecules of the fungal cell wall, has been proposed by us as a target for the design of antifungal agents7. Our efforts towards rational design of antifungal agents based on this approach have been focused on glucosamine-6-phosphate synthase inhibitors, N3-(4-methoxyfumaroyl) and N3-iodoacetyl-L-2,3-diaminopropanoic acids and their peptide conjugates with antifungal activity8~10. Recently Schering group isolated11 and synthesized12 antibiotic Sch 37137, i.e. N3-L-alanyl-N3-(d-trans-epoxysuccinamoyl)-L-2,3-diaminopropanoic acid. Structural similarity of this antibiotic to antibiotic A 1900913~15 (which differs from Sch 37137 by containing a double bond instead of an epoxide ring) and to N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP) derivatives9, both being the glutamine analogs, suggests its mechanism of antifungal action by inhibition of glucosamine-6-phosphate synthase. Our previous report on Sch 3713716, showed that its diastereomeric mixture exhibited a high degree of activity against Candida species. This prompted us to synthesize a series of Sch 37137 analogues in order to improve their in vitro anticandidal activities and to gain information on their structure activity relationships. This report describes the synthesis and in vitro anticandidal evaluation of a series of peptide analogs of Sch 37137.

Chemistry

Classical reactions used in peptide chemistry were employed for the preparation of a series of analogs of Sch 37137, including synthesis of a diastereomeric mixtures as well as both enantiomers. The 2R,3R
configuration of the epoxide moiety of natural Sch 37137 has been established independently by other authors \(^{12}\). Most of the syntheses were performed with the use of the racemic trans-epoxysuccinic acid. Our method of synthesis was based in general on the procedure reported earlier for the preparation of Sch 37137 derivatives \(^{16}\). Compounds obtained during the synthesis are summarized in Chart 1.

Treatment of \(7\)-\(3\)-(DL-/raws-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic acid (EEDP) \(1\) with \(N\)-hydroxy-succinimide esters \(^{17}\) of Boc-Nva, Boc-Met and Boc-Leu afforded the protected dipeptides \(2, 3\) and \(4\), respectively, in good yields. Dipeptide Boc-Nva-EEDP \(2\) after deprotection of the Boc group was coupled again using the active ester strategy with Boc-Nva, Boc-Lys(Boc) \(^{18}\) and Boc-Glu(OBzl) \(^{18}\) to give the protected tripeptides \(6, 7\) and \(8\). Boc-EEDP-OSu \(^{16}\) was reacted with norvaline to give dipeptide \(10\) which was reacted either with ammonia first followed by deblocking with trifluoroacetic acid to obtain the deprotected dipeptide \(10a\) or deblocked with trifluoroacetic acid first and reacted with active ester of Boc-Nva to furnish the protected tripeptide Boc-Nva-EEDP-Nva \(12\). Racemic trans-epoxysuccinic acid was resolved into (d)- and (l)-isomers with (d)- or (l)-arginine by diastereomeric salt formation \(^{19}\). (d)- and (l)-trans-epoxysuccinic acids were converted into their monomethyl esters according to the procedure described earlier \(^{19}\) and activated with DCC and HOSu to give the active esters which were allowed to react with \(N^2\)-(tert-butoxycarbonyl)-L-2,3-diaminopropanoic acid (Boc-A^2pr) \(^{20}\), deblocked and coupled with protected amino acids using the earlier reported methodology to obtain the peptides \(14, 16\) and \(18\). The protected peptides after treatment with ammonia followed by acidolysis with trifluoroacetic acid gave the Sch 37137 analogs, \(2a\sim 18a\) (Table 1) for antifungal testing.

Results and Discussion

The in vitro activity of Sch 37137 analogs was examined against selected Candida sp. by the broth
Table 1. Analytical data of deprotected peptides.

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>Yield* (%)</th>
<th>$\left[\alpha\right]_{D}^{25}$ (\text{(c 1, MeOH)})</th>
<th>MP (°C)</th>
<th>Formula analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>Nva-EADP</td>
<td>75</td>
<td>+ 9.8</td>
<td>—</td>
<td>C${12}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 38.88, H 5.32, N 12.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 38.44, H 5.04, N 12.67</td>
</tr>
<tr>
<td>3a</td>
<td>Met-EADP</td>
<td>68</td>
<td>+ 6.2</td>
<td>—</td>
<td>C${12}$H${20}$N${4}$O${6}$SCF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 36.36, H 4.57, N 12.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 36.22, H 4.55, N 11.95</td>
</tr>
<tr>
<td>4a</td>
<td>Leu-EADP</td>
<td>79</td>
<td>+ 5.8</td>
<td>—</td>
<td>C${13}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 40.54, H 5.21, N 12.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 40.34, H 5.06, N 12.42</td>
</tr>
<tr>
<td>6a</td>
<td>Nva-Nva-EADP</td>
<td>72</td>
<td>+ 4.0</td>
<td>—</td>
<td>C${13}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 40.81, H 5.84, N 13.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 41.72, H 5.66, N 13.63</td>
</tr>
<tr>
<td>7a</td>
<td>Lys-Nva-EADP</td>
<td>66</td>
<td>- 4.8</td>
<td>—</td>
<td>C${13}$H${20}$N${4}$O${6}$SCF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 42.92, H 5.56, N 13.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 42.77, H 5.32, N 13.76</td>
</tr>
<tr>
<td>9a</td>
<td>Glu-Nva-EADP</td>
<td>81</td>
<td>- 1.2</td>
<td>—</td>
<td>C${13}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 40.78, H 5.04, N 12.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 40.69, H 4.89, N 12.56</td>
</tr>
<tr>
<td>10a</td>
<td>EADP-Nva</td>
<td>70</td>
<td>- 8.0</td>
<td>—</td>
<td>C${12}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 38.88, H 5.32, N 12.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 38.66, H 5.25, N 12.98</td>
</tr>
<tr>
<td>12a</td>
<td>Nva-EADP-Nva</td>
<td>77</td>
<td>+ 8.2</td>
<td>—</td>
<td>C${13}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 41.77, H 5.84, N 13.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 41.32, H 5.82, N 13.31</td>
</tr>
<tr>
<td>14a</td>
<td>Nva-EADPb</td>
<td>77</td>
<td>-20.2</td>
<td>120~122</td>
<td>C${13}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 38.88, H 5.32, N 12.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 38.68, H 5.29, N 13.05</td>
</tr>
<tr>
<td>16a</td>
<td>Lys-Nva-EADPb</td>
<td>68</td>
<td>- 9.8</td>
<td>—</td>
<td>C${13}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 42.92, H 5.56, N 13.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 42.84, H 5.41, N 13.66</td>
</tr>
<tr>
<td>18a</td>
<td>Nva-EADPc</td>
<td>80</td>
<td>+ 25.8</td>
<td>138~140</td>
<td>C${12}$H${20}$N${4}$O${6}$CF$_{3}$COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caled: C 38.88, H 5.32, N 12.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Found: C 38.77, H 5.19, N 12.79</td>
</tr>
</tbody>
</table>

In most cases, trifluoroacetate salts of peptides form hygroscopic, amorphous powders without reproducible melting points.

* Yield of ammonolysis and deprotection.

b L-Configuration of the epoxy acid.

c D-Configuration of the epoxy acid.

** dilution method in YNB medium** (agar dilution method was also applied for comparison purposes). As shown in Table 2 most of the synthesized peptides appeared to be more active than a racemic mixture of Sch 37137 previously prepared in our laboratory. However, among the peptides obtained, the activity changed depending on the amino acid incorporated into the peptide chain. Dipeptide with norvaline residue in the N-terminal position was shown to be the most active peptide tested. Also lengthening of a peptide chain altered the anticandidal activity. In general, tripeptides were somewhat less potent than dipeptides. Chirality of the trans-epoxysuccinic acid was another factor influencing on the activity. Thus, dipeptide having D-trans-epoxysuccinamic acid (2R,3R isomer) showed higher activity than compound with the L-acid (approximately 20 times higher) suggesting that the D chirality is essential for antifungal activity. Accordingly, the tripeptide Lys-Nva-EADP with the (2R,3R) configuration of the epoxy acid exhibited higher activity than corresponding peptide with a racemic epoxy acid. Interestingly, peptide 11
Table 2. *In vitro* activity of Sch 37137 analogues.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Candida albicans ATCC 26278</th>
<th>Candida krusei</th>
<th>Candida glabrata</th>
<th>Candida famata 1940</th>
<th>Candida albicans 2043</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MICa (µg/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broth</td>
<td>Agar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala-EADPb</td>
<td>1.2</td>
<td>2.0</td>
<td>NT</td>
<td>1.5</td>
<td>NT</td>
</tr>
<tr>
<td>Nva-EADP</td>
<td>0.25</td>
<td>0.75</td>
<td>0.35</td>
<td>0.75</td>
<td>0.50</td>
</tr>
<tr>
<td>Met-EADP</td>
<td>0.35</td>
<td>0.75</td>
<td>1.0</td>
<td>1.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Leu-EADP</td>
<td>0.3</td>
<td>0.75</td>
<td>0.5</td>
<td>0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>Nva-Nva-EADP</td>
<td>0.75</td>
<td>2.0</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Lys-Nva-EADP</td>
<td>0.50</td>
<td>1.0</td>
<td>1.5</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>Glu-Nva-EADP</td>
<td>0.75</td>
<td>1.5</td>
<td>1.2</td>
<td>1.5</td>
<td>0.75</td>
</tr>
<tr>
<td>EADP-Nva</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>1.25</td>
<td>0.75</td>
</tr>
<tr>
<td>Nva-EADP-Nva</td>
<td>0.75</td>
<td>2.0</td>
<td>1.5</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Nva-EADPc</td>
<td>0.15</td>
<td>0.50</td>
<td>0.35</td>
<td>0.5</td>
<td>0.35</td>
</tr>
<tr>
<td>Lys-Nva-EADPc</td>
<td>0.20</td>
<td>0.50</td>
<td>0.75</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Nva-EADPd</td>
<td>7.5</td>
<td>15.0</td>
<td>10.0</td>
<td>12.5</td>
<td>10.0</td>
</tr>
<tr>
<td>EEDP-Nva</td>
<td>12.5</td>
<td>25.0</td>
<td>>15.0</td>
<td>>15.0</td>
<td>>15.0</td>
</tr>
<tr>
<td>Lys-Nva-FMDP</td>
<td>0.75</td>
<td>1.5</td>
<td>1.0</td>
<td>1.5</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Peptides were tested as trifluoroacetate salts.

- Yeast nitrogen base (Difco) - YNB medium containing 200 µg/ml of sodium glutamate, 10⁶ cfu/ml, 30°C, 24 hours; agar method (YNB medium with 2% agar).
- Diastereomeric mixture of Sch 37137.
- d-Configuration of the epoxy acid.
- L-Configuration of the epoxy acid.

Table 3. MIC, transport and intracellular cleavage rates of selected EADP-peptides in *Candida albicans* ATCC 26278.

<table>
<thead>
<tr>
<th>Compound</th>
<th>MIC (µg/ml)</th>
<th>Transport rate (nmol/minute/mg protein)</th>
<th>Intracellular cleavage rate (nmol/minute/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nva-EADP</td>
<td>0.25</td>
<td>2.0</td>
<td>20.4</td>
</tr>
<tr>
<td>Leu-EADP</td>
<td>0.3</td>
<td>2.3</td>
<td>27.0</td>
</tr>
<tr>
<td>Lys-Nva-EADPd</td>
<td>0.2</td>
<td>4.2</td>
<td>37.5</td>
</tr>
<tr>
<td>Nva-Nva-EADP</td>
<td>0.75</td>
<td>1.4</td>
<td>16.3</td>
</tr>
<tr>
<td>Nva-EADP-Nva</td>
<td>0.75</td>
<td>2.4</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- d-Configuration of the epoxy acid.

Table 4. Change of antifungal activity of EADP-peptides against *Candida albicans* ATCC 26278 in serum protein solution expressed as % of standard activity.

<table>
<thead>
<tr>
<th>Compound</th>
<th>5% HSAb</th>
<th>HSb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu-EADP</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Nva-EADP</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Lys-Nva-EADP</td>
<td>85</td>
<td>20</td>
</tr>
<tr>
<td>Nva-Nva-EADP</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Nva-EADP-Nva</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

- Growth was performed in the 5% solution of serum albumin in YNB modified medium or 1:1 mixture of YNB modified medium and serum, but peptides were previously preincubated in the presence of serum proteins for 2 hours at 37°C before inoculation.
- HSA — Human serum albumin, HS — Human serum.
inactivated by human serum components, thus affecting the effectiveness of the Sch 37137 and its analogs against fungal cells. The same phenomenon was observed earlier by us for N\(^3\)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid peptides\(^{22}\). Incubation of the peptides (Table 4) with 5% human serum albumin and especially in complete human resulted in the significant loss of their antifungal efficacy. It suggested the interaction of serum proteins with the peptides by an unknown mechanism which needs further investigation.

In conclusion, a series of Sch 37137 analogs have been synthesized and evaluated for in vitro antifungal activity. These peptides are taken up into cells via peptide permeases ("portage" transport\(^{23}\)), followed by enzymatic hydrolysis inside the cell and intracellular generation of the enzyme inhibitor. Antifungal activity is influenced by the length of the peptide chain, the kind of amino acid incorporated into the peptide and the chirality of the trans-epoxysuccinic acid.

Experimental

\(^1\)H NMR spectra were recorded at 60 MHz on a Varian 360 instrument with Me\(_4\)Si as internal reference. Optical rotations were measured in a Polamat A (Carl Zeiss Jena) polarimeter. Melting points were determined in an open capillary tubes and are uncorrected. TLC was carried out using Kieselgel 60 (Merck) plates. The analytical results obtained for C, H and N were within ±0.4% of the theoretical values.

The N-hydroxysuccinimide esters of N-(tert-butoxycarbonyl)amino acids (Nva, Lys, Met, Leu and Glu(2Bz)) were prepared by the previously described method\(^{17}\). Monoethyl L- and D-trans-epoxysuccinate were prepared according to the published procedure\(^{19}\).

Representative synthetic route to a Sch 37137 analogue.

\(N^2\)-(tert-Butoxycarbonyl-L-norvalyl)-N\(^3\)-(Dl-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic Acid 2 (Boc-Nva-EEDP)

To a cooled solution of \(N^3\)-(Dl-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic acid trifluoroacetate salt\(^{16}\) 1 (1.44 g, 4 mmol) and NaHCO\(_3\) (0.69 g, 8 mmol) in a mixture of water-methanol (1:1 v/v) (10 ml) was added Boc-Nva-OSu (1.25 g, 4 mmol) in MeOH (10 ml) with stirring. The reaction mixture was stirred for 1 hour in an ice-bath then at room temperature overnight. After the usual work-up and evaporation of the solvents compound 2 (1.69 g, 90% yield) was obtained. MP 69 ~ 70°C, \([\alpha]_D^{25} = -14.2^\circ\) (c 1, MeOH), \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 0.9 (3H, m), 1.1 (3H, t, \(J = 7\) Hz), 1.2 (9H, s), 3.5 ~ 3.7 (4H, m), 3.8 (1H, m), 4.1 (1H, m), 4.3 (2H, q, \(J = 7\) Hz), 6.6 ~ 6.8 (2H, m), 7.2 (1H, m).

Analyzed Calcd for C\(_{19}\)H\(_{31}\)N\(_3\)O\(_9\): C 51.22, H 7.01, N 9.43.

Found: C 51.38, H 7.27, N 9.21.

The following compounds were also prepared.

\(N^2\)-(tert-Butoxycarbonyl-L-methionyl)-N\(^3\)-(Dl-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic Acid 3

1.46 g (77% yield). MP 81 ~ 83°C, \([\alpha]_D^{25} = -26.2^\circ\) (c 1, MeOH), \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 1.1 (3H, t, \(J = 7\) Hz), 1.1 ~ 1.3 (2H, m), 4.1 (1H, m), 2.1 (3H, s), 2.2 ~ 2.4 (2H, m), 3.8 (1H, m), 4.2 (1H, m), 6.7 (2H, m), 7.2 (1H, m).

Analyzed Calcd for C\(_{19}\)H\(_{31}\)N\(_3\)O\(_9\)S: C 47.78, H 6.54, N 8.79.

Found: C 47.44, H 6.62, N 8.59.

\(N^2\)-(tert-Butoxycarbonyl-L-leucyl)-N\(^3\)-(Dl-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic

Acid 4

1.5 g (82% yield). MP 79 ~ 80°C, \([\alpha]_D^{25} = -26.2^\circ\) (c 1, MeOH), \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 0.9 ~ 1.4 (2H, br m), 1.5 (2H, m), 3.4 ~ 3.7 (4H, m), 3.8 (1H, m), 4.1 (1H, m), 4.3 (2H, q, \(J = 7\) Hz), 6.6 ~ 6.8 (2H, m),
7.2 (1H, m).

Anal Caled for C_{20}H_{33}N_{3}O_{9}: C 52.26, H 7.23, N 9.15.
Found: C 52.04, H 7.26, N 9.22.

\[N^2-L-Norvalyl-N^3-(dl-trans-4-ethoxyepoxysuccinyl)-l-2,3-diaminopropanoic \text{ Acid Trifluoroacetate Salt 5} \]

Compound 2 (1.33 g, 3 mmol) was dissolved in cold trifluoroacetic acid and kept at room temperature for 2 hours. The solvent was removed in vacuo, the residue triturated with dry ethyl ether and dried over KOH to give 1.3 g (95% yield) of 5 as an amorphous hygroscopic trifluoroacetic acid salt. [\(\varphi \)]_{D}^{25} = -5.2° (c 1, MeOH), \(^1\)H NMR (D_{2}O) \(\delta \) 1.0 (3H, m), 1.2 (3H, t, J = 7 Hz), 1.3 - 1.5 (4H, m), 3.5 - 3.6 (2H, m), 3.7 (2H, m), 3.8 (1H, m), 4.0 (2H, q, J = 7 Hz), 4.1 (1H, m).

Anal Caled for C_{14}H_{23}N_{3}O_{7}CF_{3}COOH: C 41.83, H 5.26, N 9.14.
Found: C 41.66, H 5.14, N 9.02.

\[N^2-[\text{(tert-Butoxycarbonyl-L-norvalyl)-l-norvalyl}]-N^3-(dl-trans-4-ethoxyepoxysuccinyl)-l-2,3-diaminopropanoic \text{ Acid 6} \]

This compound was prepared from Boc-Nva-OSu and compound 5 according to the procedure described for the preparation of 2. 0.47 g (83% yield). MP 87 - 90°C, [\(\varphi \)]_{D}^{25} = -38.0° (c 1, MeOH).

Anal Caled for C_{24}H_{40}N_{4}O_{10}: C 53.92, H 7.40, N 10.28.
Found: C 53.71, H 7.22, N 10.06.

\[N^2-[N^a,N^3-Bis(\text{tert-butoxycarbonyl-l-lysyl})-l-norvalyl]-N^3-(dl-trans-4-ethoxyepoxysuccinyl)-l-2,3-diaminopropanoic \text{ Acid 7} \]

According to the methodology described for 2, peptide 7 was prepared, 0.54 g (80%). MP 62 - 65°C, [\(\varphi \)]_{D}^{25} = -25.8° (c 1, MeOH).

Anal Caled for C_{30}H_{51}N_{5}O_{12}: C 53.47, H 7.63, N 10.39.
Found: C 53.21, H 7.56, N 10.42.

\[N^2-[\text{(tert-Butoxycarbonyl-L-glutamyl)-l-norvalyl}]-N^3-(dl-trans-4-ethoxyepoxysuccinyl)-l-2,3-diaminopropanoic \text{ Acid 8} \]

Tripeptide 8 was obtained from Boc-Glu(OBzl)OSu and peptide 5 according to the method described for 2. 0.59 g (83%). MP 68 - 70°C, [\(\varphi \)]_{D}^{25} = -24.0° (c 1, MeOH).

Anal Caled for C_{31}H_{44}N_{4}O_{12}: C 55.92, H 6.67, N 8.42.
Found: C 55.66, H 6.63, N 8.54.

\[N^2-[\text{(tert-Butoxycarbonyl-l-glutamyl)-l-norvalyl}]-N^3-(dl-trans-4-ethoxyepoxysuccinyl)-l-2,3-diaminopropanoic \text{ Acid 9} \]

Peptide 8 0.58 g (0.9 mmol) was dissolved in 20 ml MeOH and hydrogenolyzed in the presence of 0.05 g of 10% palladium catalyst on carbon. Then the catalyst was filtered off, the filtrate was concentrated and the residue crystallized from methanol-ethyl ether-hexane mixture to give 0.48 g (95%) of 9. MP 92 - 94°C, [\(\varphi \)]_{D}^{25} = -32.0° (c 1, MeOH).

Anal Caled for C_{24}H_{38}N_{4}O_{12}: C 50.16, H 6.66, N 9.75.
Found: C 50.08, H 6.68, N 9.44.

\[(N^2-(\text{tert-Butoxycarbonyl})-N^3-[\text{(dl-trans-4-ethoxyepoxysuccinyl)-l-2,3-diaminopropanoyl}])]\text{-l-norvaline 10} \]

From \(N^2\)-(tert-butoxycarbonyl)-N^3-(dl-trans-4-ethoxyepoxysuccinyl)-l-2,3-diaminopropanoic acid succinimido ester \(^1\)6 and l-norvaline by the procedure used to prepare 2, compound 10 was obtained. 1.12 g (75%). MP 72 - 74°C, [\(\varphi \)]_{D}^{25} = -14.0° (c 1, MeOH).

Anal Caled for C_{14}H_{31}N_{3}O_{8}: C 51.22, H 7.01, N 9.43.
Found: C 51.37, H 6.82, N 9.66.
(N\(^2\)-(tert-Butoxycarbonyl-L-norvalyl)-N\(^3\)-[(dl-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoyl])-L-norvaline 12

12 was prepared similarly to 2 from freshly deprotected peptide 11 (after trifluoroacetic acid treatment of 10) and Boc-Nva-OSu. 0.41 g (71%). MP 103~107°C, \([\alpha]_D^{25} = -30.2°\) (c 1, MeOH).

Anal Calcd for C\(_{24}\)H\(_{40}\)N\(_4\)O\(_{10}\): C 52.92, H 7.40, N 10.28. Found: C 52.77, H 7.34, N 10.16.

N\(^3\)-(d-trans-4-Ethoxyepoxysuccinyl)-L-2,3-diaminopropanolic Acid Trifluoroacetate Salt 13

N-Succinimido ethyl d-trans-epoxysuccinate [MP 96~98°C, \([\alpha]_D^{25} = -70.4°\) (c 1, THF), \(^1\)H NMR (DMSO-d\(_6\)): \(\delta\) 1.3 (3H, t, \(J = 7\) Hz), 2.9 (4H, s), 3.85 (1H, d, \(J = 2\) Hz), 3.95 (1H, d, \(J = 2\) Hz), 4.35 (2H, q, \(J = 7\) Hz). **Anal Calcd for C\(_{10}\)H\(_{12}\)N\(_2\)O\(_2\): C 46.69, H 4.31, N 5.44. Found: C 46.58, H 4.40, N 5.51.** was prepared according to the procedure described for the preparation of the racemic compound\(^{16}\). This was reacted with N\(^2\)-(tert-butoxycarbonyl)-L-2,3-diaminopropanoic acid, following the procedure published for the preparation of N\(^3\)-(dl-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic acid\(^ {16}\), yielding 0.31 g (96%) of compound 13. MP 164~166°C, \([\alpha]_D^{25} = -71.2°\) (c 1, H\(_2\)O).

Anal Calcd for C\(_{9}\)H\(_{14}\)N\(_2\)O\(_6\)CF\(_3\)COOH: C 36.67, H 4.05, N 7.42. Found: C 36.30, H 4.19, N 7.77.

A\(^2\)-(A\(^3\)-[A\(^a,7\)N\(^2\)-Bis(tert-butoxycarbonyl-L-lysyl)-L-norvalyl]-A\(^3\)-(d-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic Acid 16

This compound was prepared from Boc-Lys(Boc)-OSu and 15 by the method used for the preparation of the racemic 7, 1.16 g (82%). MP 79~81°C, \([\alpha]_D^{25} = -47.2°\) (c 1, MeOH).

Anal Calcd for C\(_{30}\)H\(_{51}\)N\(_5\)O\(_{12}\): C 53.47, H 7.63, N 10.39. Found: C 53.34, H 7.44, N 10.44.

A\(^3\)-(L-/ra\(\alpha\mu\)-4-Ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic Acid Trifluoroacetate Salt 17

17 was obtained analogously to the preparation of 13 using N-succinimido ethyl t-trans-epoxysuccinate [MP 97.5~98.5°C, \([\alpha]_D^{25} = +29.8°\) (c 1, H\(_2\)O)]. \(^1\)H NMR (DMSO-d\(_6\)): \(\delta\) 1.25 (3H, t, \(J = 7\) Hz), 2.9 (4H, s), 3.8 (1H, d, \(J = 2\) Hz), 3.9 (1H, d, \(J = 2\) Hz), 4.35 (2H, q, \(J = 7\) Hz). **Anal Calcd for C\(_{14}\)H\(_{12}\)N\(_2\)O\(_6\)CF\(_3\)COOH: C 41.51, H 5.12, N 9.03. Found: C 41.51, H 5.12, N 9.03.** and N\(^2\)-(tert-butoxycarbonyl)-L-2,3-diaminopropanoic acid, following the procedure used for the preparation of N\(^3\)-(dl-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic acid\(^ {16}\). 0.35 g (95%). MP 150~152°C and \([\alpha]_D^{25} = +29.8°\) (c 1, H\(_2\)O).

Anal Calcd for C\(_{9}\)H\(_{14}\)N\(_2\)O\(_6\)CF\(_3\)COOH: C 36.67, H 4.19, N 7.77. Found: C 36.41, H 3.98, N 7.54.

A\(^3\)-(tert-Butoxycarbonyl-L-norvalyl)-N\(^3\)-(d-trans-4-ethoxyepoxysuccinyl)-L-2,3-diaminopropanoic Acid 18

18 was prepared similarly to 14 from Boc-Nva-OSu and 17 with 78% yield. \([\alpha]_D^{25} = +30.2°\) (c, MeOH).
General Procedure for Ammonolysis and Deprotection of Peptides

The appropriate peptide 2, 3, 4, 6, 7, 9, 10, 12, 14, 16 and 18 (1 mmol) was stirred in a cold ammonia solution (29%), 20 ml for 2 hours, then ammonia was evaporated, the crude residue dissolved in 5 ml of water and passed through a short column of Amberlite CG 50 (H⁺), washed with water, evaporated and dried over KOH, then treated with 5 ml cold trifluoroacetic acid for 2 hours. The solvent was removed under reduced pressure leaving the deprotected peptides 2a, 3a, 4a, 6a, 7a, 9a, 10a, 12a, 14a, 16a and 18a. Yields and analytical data are collected in Table 1.

Acknowledgments

We would like to thank The State Committee for Scientific Research Warsaw for financial support of these studies.

References

18) Nakajima, K. & K. Okawa: Synthesis of the synthetic model enzyme. The synthesis of Cyclo(His-Glu-Cys-D-

