Sir:

Our search for new protein farnesyltransferase inhibitors recently led to the isolation of kurasoins A (1) and B (2) from a fermentation broth of Paecilomyces sp. FO-3684. Kurasoins A (1) and B (2) proved to inhibit farnesyltransferase in a dose-dependent manner. The IC_{50} values of 1 and 2 against protein farnesyltransferase were 59.0 and 58.7 μM, respectively.

The structures of 1 and 2 were initially deduced via extensive spectroscopic analyses and total syntheses of the racemates. However, the absolute configurations of 1 and 2 remained unknown. Herein we describe a concise asymmetric construction of 1 and 2, as well as the elucidation of their natural absolute configurations.

Concerning the total synthesis of kurasoin A (1), as our point of departure, Doering-Parikh oxidation of 2-(4-hydroxyphenyl)ethanol (3) (pyridine-SO_3, DMSO, Et_3N) furnished hydroxy aldehyde 4 (Scheme 1), which in turn was added vinylmagnesium bromide to obtain the racemic allylic alcohol 5 (45% overall yield). Kinetic resolution of (±)-5 via Sharpless asymmetric epoxidation [1.2 equiv (+)-DIPT, 1.0 equiv Ti(O-i-Pr)_4, 0.5 equiv t-butyl hydroperoxide, CH_2Cl_2, -20°C, 2 days] gave the desired epoxy alcohol (−)-6 in 35% yield (70% of theory) and >90% ee, as determined by NMR analysis of the derived (+)-MTPA ester. Protection of (−)-6 by TBSCI and imidazole afforded (−)-7 in 71% yield. Stereospecific alkylation of epoxide (−)-7 with phenylmagnesium bromide in the presence of Cul afforded the (−)-8 in 75% yield. Moffat oxidation (DCC, TFA, pyridine, DMSO, benzene) of (−)-8 furnished (−)-9 (88%). Finally, removal of the TBS group (HF-pyridine) generated (+)-kurasoin A (1) (68%). The synthetic material was identical with natural 1 in all respects (TLC, ^1H and ^13C NMR, IR, HRMS and UV), furthermore, optical rotation of synthetic (+)-1, [x]_D^{22} +9° (c=1.0, MeOH); natural (+)-1, [x]_D^{22} +7° (c=0.1, MeOH). The synthesis established that the absolute configuration of kurasoin A is (3S).

Use of (−)-DIPT for asymmetric epoxidation of (±)-5...
subsequently furnished the (−)-enantiomer of 1 \([\alpha]_{D}^{22} -6.0° (c=1.0, \text{MeOH})\). We next analyzed racemic kurasoin A \([±]-1\), synthetic (+)-1, (−)-1 and natural (+)-1 via HPLC with a chiral stationary phase. The antipodes were separated and individually characterized. The natural-1 was identical with synthetic (+)-1.\(^1\)

On the other hand, for the total synthesis of kurasoin B (2), as our point of departure, addition of vinylmagnesium bromide to phenylacetaldehyde (10) afforded the racemic allylic alcohol 11 (Scheme 2) in 68% yield. Kinetic resolution of (+)-11 via Sharpless asymmetric epoxidation4) \([1.2 \text{ equiv } (-)-\text{DIPT}, 1.0 \text{ equiv } \text{Ti(O-\text{Pr})}_4, 0.5 \text{ equiv } \text{f-butyl hydroperoxide, } \text{CH}_2\text{Cl}_2, -20°C, 2 \text{ days}]\) gave the desired epoxy alcohol (−)-12 in 38% yield (76% of theory) and >90% ee, as determined by NMR analysis of the derived (+)-MTPA ester,5) and recovered 11 in 45% yield. Then, (−)-12 was oxidized (CrO\(_3\), H\(_2\)SO\(_4\)) to furnish epoxy ketone (−)-13 in 82% yield. Stereospecific alkylation of indole (2.0 equiv) with epoxide (−)-13 (1.4 equiv SnCl\(_4\), CCl\(_4\), 0°C)\(^6\) afforded (+)-kurasoin B (2) in 27% yield. The synthetic material was identical with natural 2 in all respects (TLC, \(^1\)H and \(^13\)C NMR, IR, HRMS and UV), furthermore, optical rotation [synthetic (+)-2, \([\alpha]_{D}^{22} +31° (c=0.33, \text{chloroform}); \text{natural } (+)-2\(^{11})), \([\alpha]_{D}^{22} +22° (c=0.1, \text{chloroform})]\]. The synthesis also established that the absolute configuration of kurasoin B is (3S).

Use of (−)-DIPT for asymmetric epoxidation of (±)-11 subsequently furnish the (−)-enantiomer of 2 \([\alpha]_{D}^{22} -15° (c=0.4, \text{chloroform})\]. We also analyzed racemic kurasoin B \([±]-2\), synthetic (+)-2, (−)-2 and natural (+)-2 via HPLC with a chiral stationary phase. The antipodes were separated and individually characterized. The natural-2 was identical with synthetic (+)-2.

The completion of these syntheses supported that kurasoin A (1), and B (2) are (3S)-3-hydroxy-4-(\(\beta\)-hydroxyphenyl)-1-phenyl-2-butanone, and (3S)-3-hydroxy-4-(3-indolyl)-1-phenyl-2-butanone.\(^2\)

In summary, we have prepared (+) and (−)-kurasoin A (1) and (+) and (−)-kurasoin B (2) in sufficient quantities to permit more detail biological evaluation. Further studies of the kurasoins are in progress.

Acknowledgments

We wish to thank Ms. AKIKO NAKAGAWA and Ms. CHIKAKO SAKABE, School of Pharmaceutical Sciences, Kitasato University, for measurements of mass spectra. This work was supported in part by a grant from Ministry of Education, Science and Culture of Japan and Japan Keirin Association.

TOSHIAKI SUNAZUKA
TOMOYASU HIROSE
TIAN ZHI-MING
RYUJI UCHIDA
KAZURO SHIOMI
YOSHIHIRO HARIGAYA
SATOSHI ÔMURA*

Research Center for Biological Function,
The Kitasato Institute and School of
Pharmaceutical Sciences, Kitasato University,
Shirokane, Tokyo 108, Japan
(Received February 12, 1997)

References

\(^{11}\) Chiralcel OJ i.d. 4.6 x 250 mm column; mobile phase, n-hexane - 2-propyl alcohol (85:15); Flow rate, 1.0 ml/minute; Detection, UV at 275 nm.

