A 7.6 kb DNA Region from *Streptomyces kasugaensis* M338-M1 Includes Some Genes Responsible for Kasugamycin Biosynthesis

SOUICHI IKENO*, TOMOHIRO TSUJI, KENJI HIGASHIDE, NAOKO KINOSHITA¹, MASA HAMADA¹ and MAKOTO HORI

Showa College of Pharmaceutical Sciences, 3-3165 Higashi Tamagawagakuen, Machida-shi, Tokyo 194, Japan ¹Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication December 22, 1997)

A 7.6 kb PstI-KpnI DNA fragment including a sequence highly similar to kasugamycin acetyltransferase gene (*kac*) was isolated from *Streptomyces kasugaensis* M338-M1 and sequenced. Nine open reading frames (ORFs), designated as ORF A, B, C, D, E, F, G, H and I, were recognized in this region, although ORF A was incomplete. ORF G runs in the opposite direction to the others. The amino acid sequence deduced from ORF H showed 98% similarity to that of the kasugamycin acetyltransferase from *S. kasugaensis* MB273-C4, another kasugamycin (KSM) producer. Transformation of *E. coli* JM109 with ORF H made the strain highly resistant to KSM. The deduced amino acid sequences of the ORF A, C and D products were similar, respectively, to glucosyltransferase I from *E. coli* (26%), γ-alanine:pyruvate transaminase from *Pseudomonas putida* (32%) and dTDP-D-glucose 4,6-dehydratase (StrE) from *Streptomyces griseus* (37%). The strE-like ORF (ORF D) seems to be the gene responsible for formation of the 6-deoxy structure of the kasugamine moiety. ORF A and ORF C are also likely to have roles in KSM biosynthesis. Taken together, our analyses strongly suggest that this DNA region includes at least a part of the gene cluster of KSM biosynthesis.

Kasugamycin (KSM) is an aminoglycoside antibiotic produced by *Streptomyces kasugaensis* M338-M1, effective against *Piricularia oryzae* and widely used in agriculture in Japan to prevent the rice blast. From *S. kasugaensis* MB273-C4, another KSM producing strain, a gene coding for the enzyme that acetylates the 2'-NH₂ of KSM and thereby inactivates the antibiotic was cloned and named *kac* by HIRASAWA et al. (JP. A-05-23187, 1993). In our previous paper we described that a *kac*-like sequence was found in the genome of every KSM producer tested and that spontaneous deletion of the sequence paralleled the loss of KSM productivity of *S. albus* MF861-C4, a third KSM producer whose genome was somehow unstable. The results suggested that *kac* is a self-resistance gene for KSM producers and located close to other KSM biosynthetic genes.

In the present paper we report the cloning and sequence analysis of a 7.6 kb PstI-KpnI DNA fragment including a *kac* congener from *S. kasugaensis* M338-M1. We propose that at least three ORFs in this DNA region would be assigned to KSM biosynthesis.

Materials and Methods

Bacterial Strains, Plasmids, Fermentation Media and Genetic Manipulations

Streptomyces kasugaensis M338-M1, isolated as a KSM producer at the Institute of Microbial Chemistry in 1963, was grown in TSB medium at 27°C for 2 days and processed to obtain genomic DNA as described previously. *Escherichia coli* DH5α (TOYOBO, Code No. DNA-903) was grown at 37°C in YT and/or 2×YT medium containing ampicillin (100 μg/ml). *E. coli* TH2 (TaKaRa, Code No. 9056) and *E. coli* JM109 (TaKaRa, Code No. 9052) were grown at 37°C in L-broth (Bacto tryptone 10 g, Bacto yeast extract 5 g, NaCl 5 g in 1 liter water, pH 7.5) containing chloramphenicol (12 μg/ml) and streptomycin (50 μg/ml for *E. coli* TH2) or ampicillin...
Table 1. Plasmids prepared in this study.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Relevant properties</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC 118</td>
<td>3162 bp; Amp*, E. coli plasmid</td>
<td>26</td>
</tr>
<tr>
<td>pSKE 1</td>
<td>6.9 kb; pUC118 containing 3.7 kb KpnI DNA fragment from S. kasugaensis M338-M1</td>
<td>This work</td>
</tr>
<tr>
<td>pKF 3</td>
<td>2247 bp; Sm*, Cm*, E. coli plasmid</td>
<td>27, 28</td>
</tr>
<tr>
<td>pSKE 2</td>
<td>6.3 kb; pKF 3 containing 4.1 kb PstI DNA fragment from S. kasugaensis M338-M1</td>
<td>This work</td>
</tr>
<tr>
<td>pTV 118N</td>
<td>3163 bp; Amp*, derived from pUC118</td>
<td>29</td>
</tr>
<tr>
<td>pTV 273kac</td>
<td>3.6 kb; pTV 118N containing an amplified kac structural gene, 440 bp NcoI-BamHI DNA fragment from S. kasugaensis MB273-C4</td>
<td>This work</td>
</tr>
<tr>
<td>pTV 338kac</td>
<td>3.6 kb; pTV 118N containing an amplified kac structural gene, 437 bp NcoI-BamHI DNA fragment from S. kasugaensis M338-M1</td>
<td>This work</td>
</tr>
</tbody>
</table>

DNA Sequencing

The DNA fragments from *S. kasugaensis* M338-M1 cloned in pSKE 1 and pSKE 2 were digested with appropriate restriction endonucleases, and were subcloned in the pUC118. The resulting subclones were sequenced with an automated laser fluorescence sequencer (ALFred™ DNA Sequencer, Pharmacia). Sequencing reactions were done using the Cy5™ AutoCycle™ Sequencing Kit (Pharmacia, Code No. 27-2693-02) according to the supplier’s instructions. The sequencing reactions were analyzed with an ALFred™ DNA Sequencer on a 6M urea- 6% polyacrylamide gel in 1.2 × Tris-borate-EDTA (120 mM Tris, 99.6 mM Borate, 1.2 mM EDTA), and the running buffer was 0.6 × Tris-borate-EDTA (spacer 0.35 mm, 47°C, 10 hours). Sequence primers used were M13 universal and reversal primers from the Cy5™ AutoCycle™ Sequencing Kit and synthesized oligonucleotide primers (labeled with Cy5).

Computer Analysis of DNA and Protein Sequences

DNA and protein sequences were analyzed with the DNASIS-Mac version 3.6 (Hitachi Software Engineering Co., Ltd.). Amino acid sequences of potential gene products were compared with those in the databases (SWISS-PROT and PIR) by means of BLAST™.

Expression of ORF H (*kac*) in *E. coli* JM109

5'-KAC primer (Sense: 5'-GGCCATGGCGCGCTGGGAGGACA-3') and 3'-KAC primer (Antisense: 5'-GGGGATCCTCGTTACAGGGCGATCA-3') were used for amplification of both *kac* structural genes. PCR amplification was performed using a MiniCycler™ (MJ Research). Each reaction mixture contained 50 ng genomic DNA, 20 pmols each primer, 50 mM each dNTP, 20 mM Tris-HCl pH 8.0, 25 mM KCl, 1.5 mM MgCl₂ and 0.05% Tween 20 in a final volume of 100 µl. After addition of 2 U VentR (exo-) DNA polymerase (New England BioLabs, Code No. 257S), the DNA template was denatured 98°C for 2 minutes. Amplification was carried out by 30 cycles of annealing, extension (2 minutes at 72°C) and denaturation (30 seconds at 98°C). The resulting PCR products were digested with *NcoI/BamHI* (double digestion) and cloned into pTV118N (TaKaRa, Code No. 3328) to create pTV273kac and pTV338kac. With these plasmids (pTV118N, pTV273kac and pTV338kac), *E. coli* JM109 was transformed.

Single colonies were used to inoculate 2 ml L-broth containing ampicillin (100 µg/ml). After 16 hours of growth at 37°C, 1 ml of each culture was used to inoculate 9 ml L-broth containing ampicillin (100 µg/ml) and growth was continued at 37°C for 10 hours. At an OD₆₂₀ of 0.5 isopropylthio-β-galactoside (IPTG) was added to give a final concentration of 1 mM, and growth was continued for an additional 3 hours. These cultures (each 5 ml) were plated on a YT-1.5% agar plate and incubated at 37°C for 16 hours.

Nucleotide Sequence Accession Number

The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL and GenBank nu-
Fig. 1. Restriction map of a 7.6 kb PstI-KpnI DNA region, including the kasugamycin acetyltransferase gene \((kac^{338})\) from \textit{S. kasugaensis} M338-M1.

The ORFs within this region are indicated by open arrows. Numerals on the arrow heads indicate untranslated spaces. Minus indicates overlapping.

cleotide sequence databases with the accession number AB005901.

Results

Cloning and Sequencing Analysis of the 7.6 kb PstI-KpnI DNA Region

A 3.7 kb KpnI fragment from \textit{S. kasugaensis} M338-M1 was cloned using as a probe a 734 bp BamHI fragment including \textit{kac} gene \((kac^{273})\) from \textit{S. kasugaensis} MB273-C4 (JP. A-05-23187). The recombinant plasmid clone was designated pSKE 1 (Fig. 1). A 4.1 kb PstI fragment from \textit{S. kasugaensis} M338-M1 was also cloned using as a probe a 271 bp KpnI-PstI fragment from pSKE 1. The plasmid clone was named pSKE 2 (Fig. 1).

We sequenced the entire 7581 bp \textit{PstI}-\textit{KpnI} DNA region from pSKE 1 and pSKE 2 (Fig. 2). The GC content of the entire region was 71.6%. Within this region we recognized nine open reading frames (ORFs), i.e. ORF A, B, C, D, E, F, G, H and I, all with high GC contents (80.3~90.9%) in the deduced 3rd codon positions\(^5\), though ORF A was incomplete (Fig. 1, 2). These ORFs all run in the same direction except for ORF G (Fig. 1). Translational start codons were predicted from end-to-end similarity to other authentic proteins.

As potential ribosome binding site (RBS) candidates, there were GAAAGG preceding ORF C (1918~1923) and ORF D (3241~3246) and GAAA preceding ORF H (6306~6309). These sequences are complementary to the 3' end of streptomyces 16S rRNA\(^6\)~\(^8\). No other ORFs had RBS candidates (Fig. 2).

There were inverted repeat sequences downstream of ORF A (822~880, \(-36.18\) kcal/mol), ORF G (5549~5608, \(-32.34\) kcal/mol) and ORF I (7359~7406, \(-36.70\) kcal/mol), possibly functioning as transcriptional terminators (Fig. 2). Noncoding regions were 388 bp between ORF A and B, 25 bp between B and C, 13 bp between C and D, 200 bp between G and H, and 341 bp between H and I. Some genes showed overlapping sequences; ORF D and E by 1 bp, E and F by 4 bp, and F and G by 7 bp (Fig. 1, 2).

Possible functions of the nine ORF products were deduced from the results of a homology search using the BLAST program\(^4\). The ORF B, E, F, G, and I showed no significant similarities with any proteins in the databases.

Possible Roles of Some ORFs in KSM Biosynthesis

\textbf{ORF H}

ORF H showed 98% base-sequence homology with \textit{kac}\(^{273}\), hence ORF H was denoted \textit{kac}\(^{338}\) hereafter. The base sequences of \textit{kac}\(^{273}\) and \textit{kac}\(^{338}\), with the amino acid sequences of their deduced proteins (\textit{Kac}\(^{273}\) and \textit{Kac}\(^{338}\)), are shown in Fig. 3.

Compared with \textit{kac}\(^{273}\), \textit{kac}\(^{338}\) showed four base substitutions at G114A, G115A, C340T and C378T.
Fig. 2-1. Nucleotide sequence of the 7.6kb PstI-KpnI DNA region from *S. kasugaensis* M338-M1 and deduced amino acid sequence corresponding to ORFs.
Fig. 2-2. Nucleotide sequence of the 7.6 kb PstI-KpnI DNA region from *S. kasugaensis* M338-M1 and deduced amino acid sequence corresponding to ORFs.
(G115A alone caused a missense mutation, while the others silent), and deletion of three sequential bases, CGG (186–188). In the deduced protein (Kac338), consequently, there were an amino acid substitution of Val39Ile and a deletion of Gly63 (Fig. 3). The amino acid sequence homology between Kac273 and Kac338 was 98%. Then we tested if kac338, as well as kac273, could transform an E. coli strain to become resistant to KSM. The transformants with kac338 or kac273, but not with the control plasmid, showed resistance to KSM at concentrations above 800 ng/ml (Fig. 4). The result strongly suggested that kac338 endowed the KSM producer
Fig. 3. Comparisons of nucleotide and deduced amino acid sequences of kac genes from *S. kasugaensis MB273-C4* and M338-M1.

(1) StrE (StrE9) from *Streptomyces griseus* and RfbB10 from *Xanthomonas campestris*, respectively (Fig. 5). There were additional similarities of OrfD to StrE: (1) the two were close in length, i.e. 329 codons (OrfD) vs. 328 codons (StrE), and (2) OrfD and StrE shared a highly preserved NAD(P) binding motif near their N-terminals (Fig. 6). StrE, as well as rfbB, codes for dTDP-D-glucose 4,6-dehydratase, that is the gene responsible for formation of the 6-deoxy structure of these antibiotics, i.e. streptomycin for StrE9), granaticin for GraE12), and mithramycin for MtmE13).

W. PIEPERSBERG et al.14) have proposed that StrE-like genes are typically present member in gene clusters for the biosynthesis of these antibiotics, i.e. streptomycin for StrE9), granaticin for GraE12), and mithramycin for MtmE13). The presence of the 6-DOH moiety in KSM, as well as the close location of ORF D to kac338, strongly suggests that the DNA region we analyzed should coincide at least in part with the gene cluster for KSM biosynthesis. We therefore designated ORF D as kasD.

ORF C

A deduced product encoding ORF C (OrfC) spanned 436 codons whose sequence showed 32% similarity with α-alanine: pyruvate transaminase15) of *Pseudomonas putida* (Fig. 5) and included a sequence, Val237 through Leu27, that was a pyridoxal phosphate attachment site motif (Fig. 7) in ornithine aminotransferase16). The role of Orf C for KSM biosynthesis should be to convert carbonyl group (C-4' position of kasugamine moiety) to amino group, and therefore we designated ORF C as kasC.
Fig. 4. Comparison of KSM resistance.
1: Transformed with empty vector, pTV118N.
2: Transformed with pTV273kac.
3: Transformed with pTV338kac.

ORF A

ORF A, possibly corresponding to a part of a gene, was located to one end of the DNA region we analyzed. The 3rd codon positions showed high GC content throughout the ORF (251 codons, determined so far), as did other streptomyces genes. Neither an initiation codon nor an RBS was recognized yet, however. The ORF A product showed 26% similarity with glucosyltransferase from E. coli (Fig. 5), suggesting a possible role in kasugamine addition during KSM biosynthesis. We therefore designated ORF A as kasA.

Discussion

Biosynthesis of KSM was studied by FUKAGAWA et al. in 1968 by mainly determining the incorporation of radioactive precursors into KSM or its moieties. The results showed that (1) D-glucosamine was efficiently incorporated into the kasugamine moiety from E. coli (Fig. 5), suggesting a possible role in kasugamine addition during KSM biosynthesis. We therefore designated ORF A as kasA.

The deduced product of kasD (KasD) possibly catalyzes Step 1 in view of its similarity with dTDP-glucose 4,6-dehydratase (strE gene product, StrE) including an NAD(P) binding motif (Fig. 5, 6). strE-like genes cloned so far share about 60% homology. The low similarity (37%) between KasD and the StrE may reflect the structural difference between the substrates for the two enzymes. It is likely, as FUKAGAWA et al. proposed also, that the biosynthetic route of KSM, a secondary metabolite, diverges from the primary metabolism of sugars at UDP-GlcNAc.

kasC, the upstream neighbor of kasD, should code for a pyridoxal phosphate binding protein and transaminase that catalyzes Step 2 (Fig. 8).

ORF B, kasC, kasD, ORF E and ORF F are located very closely one after another and some are even
Deduced amino acid sequences of the ORF A, ORF C and ORF D products were compared with glucosyltransferase I from *E. coli*, β-alanine:pyruvate transaminase from *Pseudomonas putida* and the StrE (dTDP-glucose 4,6-dehydratase) from *S. griseus*, respectively. These data were compared using a window of 30 and a stringency of 8.

Highly conserved amino acid residues among NAD(P) binding proteins were indicated asterisks (*).
overlapping (Fig. 2). In a gene cluster for biosynthesis of an antibiotic, most genes are separated with close margins or even overlapping and some are transcribed into a polycistronic mRNA. One bp overlapping like—TGATG—and four bp overlapping like—ATGA—are common in streptomyces and other bacteria and the overlapping genes are often found in operons. The close location of many ORFs we observed seems not unusual, therefore.

Preliminary experiments using RT-PCR suggested that
ORF B, kasC, kasD, ORF E and ORF F were transcribed concurrently, possibly into a polycistronic mRNA, while ORF G appeared to be expressed in a reverse direction (data not shown).

None of our ORFs included TTA27), ruling out the presence of kac, as the TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Construction of blocked mutants for the ORFs and determination of biological activities of gene products are in progress.

Acknowledgments

We thank Miss Akiko Koyano and Miss Yumi Zenyoubi for excellent technical assistance and Dr. Kiyoshi Hirasawa, Hokko Chemical Industries Co. Ltd., for providing pUC18-KBI (carrying a kac273 gene).

References

27) TOBA-MINOWA, M. & T. HASHIMOTO-GOTOH: Character-

VOL. 51 NO. 3 THE JOURNAL OF ANTIBIOTICS 351
ization of the spontaneous elimination of streptomycin sensitivity (SmS) on high-copy-number plasmids: SmS-enforcement cloning vectors with a synthetic \(rpsL \) gene. Gene 121: 25–33, 1992
