MJ347-81F4 A & B, Novel Antibiotics from Amycolatopsis sp.:
Taxonomic Characteristics, Fermentation, and Antimicrobial Activity

TORU SASAKI, TOSHIKO OTANI*, HIROSHI MATSUMOTO
and NORIO UNEMI

Taiho Pharmaceutical Co., Ltd., Tokushima Research Center,
224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan

MASA HAMADA and TOMIO TAKEUCHI

Institute of Microbial Chemistry,
3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan

MAKOTO HORI

Showa College of Pharmaceutical Sciences,
Machida-shi, Tokyo 194-0042, Japan

(Received for publication April 16, 1998)

Strain MJ347-81F4 has been found to produce two new cyclic thiazolyl peptide antibiotics, components A and B. Taxonomic studies including morphological and physiological characteristics and chemical analysis of whole cells of the producing strain revealed this microorganism to belong to genus Amycolatopsis, and so we designated the strain Amycolatopsis sp. MJ347-81F4. After 10 to 12 days of fermentation, most of the antibacterial activity was present mainly in the mycelial cake and reached its maximum level. In comparison with reference compounds, A as the major component showed excellent in vitro activity against Gram-positive bacteria including highly methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis with MICs in the range of concentration of 0.006–0.1 μg/ml. The results on the antimicrobial activity against thiazolyl peptide-resistant mutants of Bacillus subtilis NRRL B-558 indicated that the possible molecular target of MJ347-81F4 component A might be the 50S subunits of the ribosome, the inactivation of which would inhibit protein synthesis.

During the course of our investigation for the discovery of novel antibacterial antibiotics, especially those possessing potent activity against methicillin-resistant Staphylococcus aureus (MRSA), from microorganisms isolated from new soil samples, we found Amycolatopsis sp. MJ347-81F4 to produce two new antibiotics, hereafter designated MJ347-81F4 components A and B. The antibiotic complex was mainly present in the mycelial cake and it was extracted with acetone. The respective components were purified by solvent extraction and bioassay-directed fractionation employing a combination of repetitive countercurrent chromatography and preparative reversed-phase HPLC. The structures of components A and B with molecular formulas of C_{61}H_{60}N_{14}O_{18}S_5 (MW: 1437) and C_{60}H_{58}N_{14}O_{18}S_5 (MW: 1423) were elucidated by chemical degradation and spectroscopic methods including a combination of extensive 2D-NMR and MS experiments. As shown in Fig. 1, components A and B are new members of the family of thiazole-containing cyclic peptides, as described in Berdy. These structures resemble closely that of glycothiohexide in sharing a thiazolyl peptide core of similar size and a dimethylamino sugar. The major difference between MJ347-81F4 components A and B and glycothiohexide is the presence of dehydroalanine in the former two and of cysteine derived moiety as the bicyclic bridgehead in the place of the serine derived moiety in the latter. The major component A was isolated in sufficient quantity to permit evaluation of its biological activity. Accordingly, in this paper, we describe the
Materials and Methods

Microorganisms

Strain MJ347-81F4 was isolated from a soil sample collected in Hamochi-machi, Sado-gun, Niigata prefecture, Japan. The strain has been deposited in the National Institute of Bioscience and Human-Technology, Japan, under the accession number FERM BP-5184. Amycolatopsis orientalis ISP 5040T and Nocardia asteroides IFO 3384T were used as reference strains for detection of mycolic acid. Two thiazolyl peptide-resistant mutants of Bacillus subtilis NRRL B-558 were selected by one overnight incubation of a shaking-culture.13) The MRSA strains used in this study were clinical isolates obtained in Japan in 1992. All of the other strains used belong to the culture collection of our laboratory at Taiho Pharmaceutical Co., Ltd.

Taxonomic Studies

The media and procedures used for cultural and physiological characteristics of this strain were those described by SHIRLING and GOTTLIEB, and by WAKSMAN. The culture was carried out at 27°C for 2 to 4 weeks. The color index was assigned in accordance with color chips from the Color Harmony Manual (Container Corporation of America). The temperature range for growth was determined on inorganic salts-starch agar (ISP No. 4 medium). Utilization of carbon sources was examined by the method of PRIDHAM and GOTTLIEB. The specimens for observation of spore morphology were prepared by use of a modified method of LOCCI and photographed by a scanning electron microscope (Model Hitachi S-570).

Chemotaxonomic Studies

Strain MJ347-81F4 was cultured in 100 ml of YD medium consisting of 1.0% yeast extract and 1.0% glucose in 500-ml Erlenmeyer flasks at 30°C on a rotary shaker (220 rpm). After incubation for 7 days, the mycelial cake was harvested by centrifugation, and lyophilized to dryness after having been washed with water. The type of diaminopimelic acid and sugars in the whole-cell hydrolysates was determined by the method of BECKER et al. and LECHEVALIER and LECHEVALIER, as modified by STANECK and ROBERTS, for separation on a cellulose thin-layer chromatograph. Phospholipids and mycolic acids were extracted and then analyzed by the procedure of MINNKIN et al. Menaquinones, after extraction and purification according to the method of COLLINS et al., were analyzed by HPLC on an Inertsil ODS-2 column (150 x 4.6 mm, i.d., GL Sciences) under the conditions described by TAMAOKA et al., and further followed by electron impact mass-spectrometry. Fatty acid-pattern was analyzed by gas liquid chroma-
tography of whole-cell methanolysates. Their methyl-
esters were determined by use of a Shimadzu model
GC-17A gas chromatograph equipped with a flame
ionization detector, and a Shimadzu model CR-6A
integrator. A Megabore DB-1 column (15 m × 0.35 mm,
i.d., J & W Scientific) was used.

Fermentation
Seed medium consisting of 1.0% glycerol, 2.0%
galactose, 2.0% dextrin, 1.0% Bacto soytone, 0.5% corn
steep liquor, 0.2% (NH₄)₂SO₄, and 0.2% CaCO₃ was
adjusted to pH 7 and then sterilized at 121°C for 15
minutes in 500-ml Erlenmeyer flasks containing 100 ml
of medium. The culture on an agar slant was inoculated
into each flask and cultured at 27°C for 4 days on a
rotary shaker. Stock for the seed culture was prepared
as follows: one ml of 20% glycerol was added to 1 ml of
the seed culture and stored at -35°C. Then, stock culture
was inoculated to the seed medium and cultured at 27°C
for 3 days under the same conditions. Five milliliters
of the seed culture thus obtained was inoculated into each
of several 500-ml Erlenmeyer flasks, each containing
120 ml of the same medium. The fermentation was carried
out at 27°C for 11 days. Mycelial growth was expressed
as packed cell volume obtained from 10 ml of the culture
fluid after centrifugation at 2,800 rpm for 10 minutes.

In Vitro Susceptibility Testing and HPLC Analysis
Antimicrobial activity was monitored as growth in-
hibition against Staphylococcus aureus FDA 209P by the
paper disk method. Further, the potency of major com-
ponent A in the fermentation broth was determined by
reversed-phase HPLC using an Inertsil ODS-2 column
with acetonitrile/ tetrahydrofuran/0.01% trifluoroacetic
acid (22:10:68) at a flow rate of 1.0 ml/minute with
detection by UV absorption at 220 nm. The sample for
assay by HPLC was prepared as follows: 2 ml of acetone
was added to 1 ml of the fermentation broth; and after
having been stirred vigorously for 1 minute, the mixture
was centrifuged at 3,100 rpm for 5 minutes. Ten micro-
liters of the supernatant obtained was directly applied
to a Shimadzu Model LC-6A HPLC system. One unit
of antibiotic production was defined as the amount of
component A that gave peak area of 1,000 under the
HPLC conditions as mentioned above.

Antimicrobial Activity
Antimicrobial spectrum was determined by the serial
agar dilution method on Mueller-Hinton agar (Difco).
Approximately 10⁴ CFU per spot were inoculated onto
agar plates that contained two-fold serial dilutions of
antibiotic. Minimum inhibitory concentration (MIC)
was indicated as the lowest concentration of antibiotic
that inhibited completely visible growth after incubation
for 18 hours at 37°C. Further, looking for possible
molecular targets, we measured the MIC of MJ347-81F4
component A in comparison with that of the reference
compounds against Bacillus subtilis NRRL B-558 ATM''
(V228A) and TS' (L11) mutants, which are resistant to
amythiamicin (MIC, >100 μg/ml) and thiostrepton
(MIC, >100 μg/ml), respectively, as described previous-
l-y13).

Results and Discussion
A scanning electron micrograph of spores of strain
MJ347-81F4 is shown in Fig. 2. This strain displayed
branched vegetative hyphae, which had a slight tendency
to assume a zig-zag shape and tended to break down
into squarish subunits. The aerial hyphae produced
cylindrical conidia with straight to flexuous chains. The
spores were 0.4~0.5 × 0.9~1.2 μm in size with a smooth
surface. Sporangia, motile spores, flagellum, and syn-
nemata were not observed.

The culture characteristics of strain MJ347-81F4 are
summarized in Table 1. The substrate mycelium showed
a yellow to light yellowish-brown color on various media.
Table 1. Culture characteristics of strain MJ347-81F4.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Growth</th>
<th>Aerial mycelium</th>
<th>Soluble pigment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose-nitrate agar</td>
<td>Yellowish-brown (2 ne)</td>
<td>Yellowish-white</td>
<td>Absent</td>
</tr>
<tr>
<td>Glucose-aspargagine agar</td>
<td>Pale yellow</td>
<td>Yellowish-white</td>
<td>Absent</td>
</tr>
<tr>
<td>Glycerol-aspargagine agar (ISP med. No. 5)</td>
<td>Pale yellow</td>
<td>Yellowish-white</td>
<td>Absent</td>
</tr>
<tr>
<td>Inorganic salts-starch agar (ISP med. No. 4)</td>
<td>Light yellowish-brown (2 pg, 3 pg)</td>
<td>Pale yellow (1 ba) ~ yellowish-white (1 ca)</td>
<td>Absent</td>
</tr>
<tr>
<td>Tyrosine agar (ISP med. No. 7)</td>
<td>Pale yellow ~ light yellowish-brown (2 le)</td>
<td>Yellowish-white</td>
<td>Yellowish</td>
</tr>
<tr>
<td>Oatmeal agar (ISP med. No. 3)</td>
<td>Dull yellow (1 1/2 le)</td>
<td>Yellowish-white</td>
<td>Yellowish</td>
</tr>
<tr>
<td>Yeast extract-malt extract agar (ISP med. No. 2)</td>
<td>Light yellowish-brown (2 le)</td>
<td>Yellowish-white</td>
<td>Absent</td>
</tr>
<tr>
<td>Nutrient agar</td>
<td>Light yellowish-brown</td>
<td>Whitish</td>
<td>Absent</td>
</tr>
<tr>
<td>Bennet’s agar</td>
<td>Light yellowish-brown (2 le)</td>
<td>Whitish</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Table 2. Physiological characteristics of strain MJ347-81F4.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range for growth</td>
<td>27 ~ 37°C</td>
</tr>
<tr>
<td>Optimum temperature</td>
<td>27°C</td>
</tr>
<tr>
<td>Formation of melanoid pigment</td>
<td>Negative</td>
</tr>
<tr>
<td>Liquefaction of gelatin</td>
<td>Positive</td>
</tr>
<tr>
<td>Coagulation of milk</td>
<td>Negative</td>
</tr>
<tr>
<td>Peptonization of milk</td>
<td>Positive</td>
</tr>
<tr>
<td>Hydrolysis of starch</td>
<td>Positive</td>
</tr>
<tr>
<td>Reduction of nitrate</td>
<td>Negative</td>
</tr>
<tr>
<td>Decomposition of cellulose</td>
<td>Negative</td>
</tr>
<tr>
<td>Production of H₂S</td>
<td>Negative</td>
</tr>
<tr>
<td>Growth in NaCl</td>
<td>1 ~ 5 (%)</td>
</tr>
<tr>
<td>Utilization of carbon sources</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>D-Xylose, D-glucose, D-fructose, sucrose, D-galactose, maltose, soluble starch, glycerol</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>L-Arabinose, L-rhamnose, inositol, raffinose, D-mannitol, salicin</td>
</tr>
</tbody>
</table>

Aerial mycelia assuming yellowish-white color were observed on some of the synthetic media. Melanoid pigments and other soluble pigments were not found. The physiological characteristics and utilization of carbon sources of this strain are shown in Table 2. This strain utilized D-xylose, D-glucose, D-fructose, sucrose, D-galactose for growth, but not L-arabinose, L-rhamnose, raffinose, inositol, D-mannitol, or salicin.

The results of chemotaxonomic studies were as follows: Analysis of the whole-cell hydrolysate demonstrated the presence of meso-diaminopimelic acid, arabinose, and galactose. Accordingly, this strain was classified as having type-IV cell walls and a type-A whole-cell sugar pattern, according to the classification proposed by Lechevalier and Lechevalier. Further, analysis of the whole-cell phospholipids revealed the presence of diphosphatidyglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), belonging to type-PII. Mycolic acids were not detected. The predominant isoprenoid quinones were MK-9(H₄), and a slight amount of MK-9(H₂) was also detected. This strain contained major amount of iso-branched 13-methyltetradecanoic acid (iso-15:0), cis-9,10-dehydrohexadecanoic acid (cis-16:1), cis-9,10-dehydroheptadecanoic acid (cis-17:1) as well as other minor components. The taxonomic properties mentioned above and particularly the chemotaxonomic results were in good accordance with those of genus Amycolatopsis, and so we designated this micro-
organism as *Amycolatopsis* sp. MJ347-81F4, although the species was not determined.

A typical time course for the production of component A is shown in Fig. 3. As seen, the maximum yield (125 units/ml) was obtained at culture day 11. The presence of component A in the culture broth was much less than a quarter of that in the mycelia. The antibacterial activity, as estimated by the inhibitory zone against *S. aureus*, paralleled the production of component A. Next we tested the productivity in the A-1 and F-1 medium used in glycothiohexide production, because component A resembled closely glycothiohexide in structure as mentioned above. As a result, the maximum production of component A in the A-1 and F-1 medium was less than 1/4 and 1/2, respectively, of the amount in the medium used for component A.

Antibiotics MJ347-81F4 components A and B are structurally related to cyclic thiazolyl peptides and have some structural similarity to these antibiotics. Compounds with closely related structures such as A-10255, glycothiohexide, S-54832, GE-2270, thiostrepton, and amythiamicin have been found, and are produced by *Streptomyces* sp., *Sebekia* sp., *Micro- monospora* sp., *Planobispora rosea*, *Streptomycetes azureus*, and *Amycolatopsis* sp., respectively. There are also examples of other similar compounds produced by microorganisms of different taxa. Accordingly, it seems that the biosynthesis system of thiazolyl peptide antibiotics occurs widely in microorganisms.

Antibiotic MJ347-81F4 component A showed excellent *in vitro* activity against Gram-positive bacteria including methicillin-resistant *S. aureus* (MRSA) and *E. faecalis*, but was inactive against most Gram-negative bacteria (Table 3). These results are similar to those reported for other thiazolyl peptide antibiotics. Further, the *in vitro* antibacterial activity against various clinical isolates of MRSA, which exhibited an MIC of >50 μg/ml toward methicillin, was compared with that of the reference compounds such as vancomycin. As shown in Fig. 4, component A was the most active of the compounds, even in comparison with the reference compound, vancomycin, which is well known to be one of the most useful antibiotics for chemotherapy of MRSA infections. However, the slow bactericidal activity and side effects of vancomycin hinder effective treatment of MRSA infections. These results indicated that
MJ347-81F4 component A as well as thiazolyl peptides may be promising candidates as anti-MRSA drugs. Furthermore, it has been recently reported that plasmid-mediated \textit{E. faecalis} and \textit{E. faecium} resistant to vancomycin pose serious clinical problems24,25. It will be interesting to determine whether these components will affect these strains or not. The evaluation of the \textit{in vivo} efficacy of MJ347-81F4 component A against MRSA and \textit{E. faecalis} is now in progress. The antifungal spectrum of MJ347-81F4 component A was determined by the broth microdilution method using RPMI 1640 medium after a 40-hour incubation at 37°C. It was active with MICs value of 50, 50, 25, 25 µg/ml, respectively, against \textit{Candida kruisi}, \textit{C. pseudotropicalis}, \textit{C. glabrata} and \textit{Saccharomyces cerevisiae}, but inactive against filamentous fungi.

Next we evaluated the mechanism of action of component A by assessing the effect of the compounds on thiostrepton (TS)- and amythiamicin (ATM)-resistant \textit{B. subtilis} NRRL B-558. The thiazolyl-peptide antibiotics such as thiostrepton, thiopeptin, and siomycin are known to act on 50S ribosomal subunits, consequently inhibiting

Table 3. Antimicrobial spectrum of MJ347-81F4 component A.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Staphylococcus aureus} FDA 209Pa</td>
<td>0.1</td>
</tr>
<tr>
<td>\textit{S. aureus} Smithb</td>
<td>0.1</td>
</tr>
<tr>
<td>\textit{S. aureus} 70b</td>
<td>0.05</td>
</tr>
<tr>
<td>\textit{S. aureus} 92-104b</td>
<td>0.1</td>
</tr>
<tr>
<td>\textit{S. aureus} 92-1191b</td>
<td>0.1</td>
</tr>
<tr>
<td>\textit{S. epidermidis} IFO 3762</td>
<td>0.2</td>
</tr>
<tr>
<td>\textit{Micrococcus luteus} ATCC 9341</td>
<td>0.006</td>
</tr>
<tr>
<td>\textit{Enterococcus faecalis} ATCC 21212</td>
<td>0.1</td>
</tr>
<tr>
<td>\textit{Escherichia coli} NIHJ JC-2</td>
<td>0.1</td>
</tr>
<tr>
<td>\textit{Citrobacter freundii} ATCC 8090</td>
<td>> 50</td>
</tr>
<tr>
<td>\textit{Klebsiella pneumoniae} NCTC 9632</td>
<td>> 50</td>
</tr>
<tr>
<td>\textit{Proteus mirabilis} IFO 3849</td>
<td>> 50</td>
</tr>
<tr>
<td>\textit{Serratia marcescens} IFO 12648</td>
<td>> 50</td>
</tr>
<tr>
<td>\textit{Pseudomonas aeruginosa} 46001</td>
<td>> 50</td>
</tr>
</tbody>
</table>

Minimum inhibitory concentration (MIC) of methicillin against methicillin-resistant \textit{S. aureus} (MRAS) was 50 µg/ml.
a Standard strain, b clinical isolate-MRSA.

Table 4. Antimicrobial activity of MJ347-81F4 component A against thiazolyl peptide antibiotic-resistant mutants.

<table>
<thead>
<tr>
<th>Drug</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wild type</td>
</tr>
<tr>
<td>MJ347-81F4 A</td>
<td>< 0.19</td>
</tr>
<tr>
<td>Thiostrepton</td>
<td>< 0.19</td>
</tr>
<tr>
<td>Siomycin</td>
<td>< 0.19</td>
</tr>
<tr>
<td>Amythiamicin</td>
<td>< 0.19</td>
</tr>
</tbody>
</table>

1 Wild type: \textit{Bacillus subtilis} B-558.
TS1: Thiostrepton-resistant mutant (L11) of \textit{B. subtilis} B-558.
ATM1: Amythiamicin-resistant mutant (V228A) of \textit{B. subtilis} B-558.

Fig. 4. Antimicrobial activity of MJ347-81F4 component A and reference compounds against clinical isolates of methicillin-resistant \textit{Staphylococcus aureus}. (27 strains).

- MJ347-81F4 component A, ○ vancomycin, ▲ ofloxacin, △ minocycline, ■ flomoxef, □ methicillin.
protein synthesis. Very recently, Hori et al.13) reported that amythiamicin inhibited polyU-directed poly-(phe) synthesis in a cell-free synthesis system including 50S ribosomal subunits. As shown in Table 4, component A as well as thiostrepton and siomycin showed poor antibacterial activity against \textit{B. subtilis} TS' L-11 (MIC, >100 \(\mu\)g/ml), but was active against \textit{B. subtilis} ATM' V228A (MIC, <0.19 \(\mu\)g/ml). The possible molecular target of this antibiotic may be the 50S ribosomal subunits to inhibit protein synthesis, since component A showed cross-resistance with thiostrepton.

Acknowledgments
The authors gratefully acknowledge the support and contributions of co-workers in our laboratory. In particular, we wish to thank Dr. T. Tamamura of Hokko Chemical Industry Co., Ltd. for gas liquid chromatograph measurements.

References
4) Pridham, T. G. \& D. Gottlieb: The utilization of carbon compounds by some \textit{Actinomycetes} as an aid for species determination. J. Bacteriology 56: 54–63, 1948