The Journal of Antibiotics
Online ISSN : 1881-1469
Print ISSN : 0021-8820
ISSN-L : 0021-8820
Mechanism of Cell Cycle Arrest Caused by Histone Deacetylase Inhibitors in Human Carcinoma Cells
YOUNG BAE KIMSE WON KIMINORU YOSNIDASUEHARU HORINOUCHI
Author information
JOURNAL FREE ACCESS

2000 Volume 53 Issue 10 Pages 1191-1200

Details
Abstract

Inhibitors of histone deacetylase (HDAC) block cell cycle progression at G1 in many cell types. We investigated the mechanism by which trichostatin A (TSA), a specific inhibitor of HDAC, induces G1 arrest in human cervix carcinoma HeLa cells. TSA treatment induced histone hyperacetylation followed by growth arrest in G1 as well as hypophosphorylation of pRb. The Cdk4 kinase activity was essentially unchanged during the TSA-induced G1 arrest. On the other hand, the arrest was accompanied by down-regulation of kinase activity of Cdk2, although the total protein levels of Cdk2 and its activator Cdc25A were unaffected. Upon TSA treatment, amounts of cyclin E and the CDK inhibitor p21WAF1/Cip1 were markedly increased, while that of cyclin A was reduced. The induction of p21 and down-regulation of cyclin A correlated well with the decreased Cdk2 activity and cell cycle arrest. Furthermore, gel filtration chromatography showed the association of p21 with the cyclin E-Cdk2 complex, suggesting that the activation of Cdk2 by the enhanced expression of cyclin E is blocked by the increased p21. The elevated expression of p21 is also observed in cells treated with trapoxin and FR901228, structurally unrelated histone deacetylase inhibitors. A human colorectal carcinoma cell line lacking both alleles of the p21 gene (p21-/-) was resistant to TSA several times more than the parental line (p21+/+). These results suggest that the suppression of Cdk2 kinase activity due to p21 overexpression play a critical role in HDAC inhibitor-induced growth inhibition.

Content from these authors
© Japan Antibiotics Research Association
Previous article Next article
feedback
Top