Cephalosporin Podand Derivatives

ÁRPÁD KOVÁCS-KULYASSA†, PAL HÉRCZEGL and FERENC J. SZTARICKSIL†

Research Group for Chemistry of Antibiotics of the Hungarian Academy of Sciences, University of Debrecen, H-4010 Debrecen POBox 70, Hungary

PAL SZABÓ

Institute of Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, POBox 17, Hungary

(Received for publication June 14, 2000)

In recent years the design and preparation of dendrimers and another multivalent molecules have emerged intensively studied subjects in organic synthesis. Biologically important substances, such as carbohydrates, amino acids often serve as the functional groups of these types of oligomers.

In many cases, related multivalent compounds possess remarkable biological effects. As an example, the so-called cluster effect in the case of the carbohydrate-containing substances is manifested in the enhanced affinity of the dendrimers towards another biomolecules due to weak, non-bonding interactions.

In the field of antibiotics, covalent oligomers or polymers have only been synthesized from vancomycin, and the complex-forming, and antibacterial properties of the derivatives obtained were found to be better than that of the parent, monomeric antibiotic.

Till now, no multivalent derivatives of the -lactam antibiotics have been synthesized. In continuation of our work in the synthesis of podand molecules, the present paper describes the preparation of certain podand-type trimers of cephalosporin antibiotics (Scheme 1).

As the central block of the target trimers the tricarboxylic acid 3 was employed, which was obtained by the alkylation of phloroglucinol (1) with methyl bromoacetate and subsequent alkaline hydrolysis. The tert-butyl esters of -aminocephalosporanic acid (5) and -aminoacetoxycephalosporanic acid (6) were acylated with the acid chloride 4 derived from 3 to obtain the trimers 9 and 11, respectively. Removal of the tert-butyl protecting group of these products upon hydrolysis with trifluoroacetic acid followed by potassium salt formation furnished the target podands 10 and 12.

It is well-known from the literature that certain cephalosporin sulfones possess -lactamase enzyme inhibitory properties, and therefore, we decided to synthesize structurally related sulphone-trimers, as well. Thus, the tert-butyl ester of -aminocephalosporanic acid sulphone (7) and the corresponding deacetoxy derivative 8 were acylated with the acid chloride 4 to give 13 and 15. Subsequent removal of the ester protecting group by hydrolysis with trifluoroacetic acid then furnished the desired trimeric cephalosporin sulphones 14 and 16.

The antibacterial activity of the cephalosporin trimers prepared was compared to that of a cefuroxime reference sample by using the agar-dilution method (Nutrient Broth). Against Staphylococcus aureus ATCC25923, cefuroxime showed a MIC of 1.5 µg/ml, but compounds 10 and 12 were active only in 12.5 and 50 µg/ml concentration, respectively. The podand 10 was considerably more active (MIC 3.12 µg/ml) against Streptococcus faecalis (OKI180171 than cefuroxime (MIC 12.5 µg/ml), while the antibacterial effect of cefuroxime and of the trimer 12 was in the same range against this microorganism. The synthesized trimers were practically inactive against Bacillus subtilis ATCC6633, Escherichia coli (OKI)35034, Proteus vulgaris (OKI)60002 and Pseudomonas aeruginosa ATCC27853. In addition, the trimeric cephalosporin sulphone derivatives 13 and 15 did not show inhibitory effect (in 50 µmole concentration) on the -lactamase enzymes produced by the strains B. cereus, E. cloacae, E. coli, P. vulgaris and P. aeruginosa.

The expected cluster effect of our cephalosporin podands unfortunately could not be detected in their biological tests. Preparation of similar podands of other antibiotics is under study in our laboratory.
Scheme 1. Synthesis of cephalosporin podand derivatives.

a) BrCH₂COOCH₃, K₂CO₃, acetone; b) 10 % NaOH, 80 °C; c) SOCl₂; d) CH₂Cl₂, pyridine, 0 °C → r.t.; e) i) 30 % TFAA/ CH₂Cl₂, ii) potassium α-ethylcaproate
Experimental

Solvents were distilled before use. Organic extracts were dried over magnesium sulphate. Solutions were concentrated at 35~40°C (bath) at ca. 17 mmHg. Melting points were determined in capillary tubes and are uncorrected. For thin layer chromatography precoated aluminum-backed plates (Silica gel 60 F254, Merck, layer thickness: 0.2 mm) were used. The spots were visualized by spraying with 7% ammonium molybdate in 5% sulfuric acid and heating. Preparative TLC was carried out on Merck silica gel 60 F254 plates, layer thickness 0.25 and 0.5 mm. IR spectra (KBr discs) were recorded on a Perkin-Elmer 16 PC FT-IR spectrophotometer. Specific rotations were measured on a Perkin-Elmer 141 MC polarimeter at room temperature. ¹H NMR spectra: Bruker WP 200 SY (200MHz) and Bruker AM 360 (360MHz) instruments; tetramethylsilane as internal standard. ¹³C NMR spectra were recorded on Bruker WP 200 SY (50MHz) and on Bruker AM 360 (90MHz) instruments (Table 1). Electrospray (ESP) mass spectrometric measurements (positive and negative ion detections) were run on a FINNIGAN TSQ 7000 triple quadrupole mass spectrometer equipped with API source; samples were introduced into 50% methanol solutions containing 0.1% acetic acid or 0.1% ammonium acetate. All compounds gave satisfactory elemental analysis data.

<table>
<thead>
<tr>
<th>Compound (solvent)</th>
<th>2</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>R\textsuperscript{11}</th>
<th>R'</th>
<th>11</th>
<th>13</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (CDCl₃)</td>
<td>3.42 ; 3.48</td>
<td>5.02</td>
<td>(d, 1H)</td>
<td>5.93</td>
<td>4.81 ; 5.1</td>
<td>1.55 (s, 9H)</td>
<td>2.10 (s, 3H,)</td>
<td>7.22 (d, 1H)</td>
<td>4.55 (s, 2H)</td>
</tr>
<tr>
<td>3 (D₂O)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
<td>7.32 (d, 1H)</td>
<td>4.55 (s, 2H)</td>
<td>6.17 (s, 1H)</td>
</tr>
<tr>
<td>9 (CDCl₃)</td>
<td>4.86 (d, 1H)</td>
<td>6.13</td>
<td>4.74 ; 5.14</td>
<td>1.54 (s, 9H)</td>
<td>2.09 (s, 3H,)</td>
<td>7.88 (d, 1H)</td>
<td>4.53 ; 4.60</td>
<td>6.17 (s, 1H)</td>
<td></td>
</tr>
<tr>
<td>11 (CDCl₃)</td>
<td>4.80 (d, 1H)</td>
<td>6.06</td>
<td>2.07 (s, 3H)</td>
<td>1.53 (s, 9H)</td>
<td>7.90 (d, 1H)</td>
<td>4.54 ; 4.66</td>
<td>6.19 (s, 1H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 (CDCl₃)</td>
<td>5.06 (d, 1H)</td>
<td>5.66</td>
<td>4.65 ; 4.84</td>
<td>2.05 (s, 3H,)</td>
<td>4.7 (s, 2H)</td>
<td>6.28 (s, 1H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 (CDCl₃)</td>
<td>5.02 (d, 1H)</td>
<td>5.57</td>
<td>1.85 (s, 3H)</td>
<td>4.68 (s, 2H)</td>
<td>6.25 (s, 1H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 (D₂O)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
<td>7.88 (d, 1H)</td>
<td>4.53 ; 4.60</td>
<td>6.17 (s, 1H)</td>
</tr>
<tr>
<td>12 (D₂O)</td>
<td>4.71 (d, 1H)</td>
<td>4.87 (d, 1H)</td>
<td>2.07 (s, 3H)</td>
<td>1.55 (s, 9H)</td>
<td>2.15 (m, 2H)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
</tr>
<tr>
<td>14 (D₂O)</td>
<td>5.31 (d, 1H)</td>
<td>6.00 (d, 1H)</td>
<td>4.70 ; 4.92</td>
<td>2.10 (s, 3H,)</td>
<td>4.71 (s, 2H)</td>
<td>6.22 (s,1H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 (D₂O)</td>
<td>5.21 (d, 1H)</td>
<td>5.91 (d, 1H)</td>
<td>1.87 (s, 3H)</td>
<td>4.64 (s, 2H)</td>
<td>6.14 (s, 1H)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
<td>(ABq, 2H)</td>
<td>(dd, 1H)</td>
</tr>
</tbody>
</table>

(3,5-Bis-methoxycarbonyl-methoxy-phenoxy)acetic Acid Methyl Ester (2)

Phloroglucinol (2.00 g, 15.9 mmol) was dissolved in the suspension of abs. acetone (100 ml) and potassium carbonate (10.0 g). Methyl bromoacetate (6.80 ml, 71.4 mmol) was added to the well-stirred slurry and the mixture was refluxed for 12 hours. The solid was filtered off, washed with dichloromethane and the organic solvents were evaporated. The residue was dissolved in dichloromethane (100 ml), extracted with 10% NaHSO₄.
solution and brine, dried and evaporated. The product crystallized by adding abs. ether, 3.22 g (59%), mp: 131-132°C; FT-IR (KBr) 1770 cm⁻¹; ESP-MS (m/z): 343 (M+H)⁺; ¹³C NMR (50 MHz, CDCl₃) δ: 52.3, 65.2, 95.2, 159.6, 168.9.

(3,5-Bis-carboxymethoxy-phenoxo)acetic Acid (3)

Compound 2 (2.13 g, 6.23 mmol) was dissolved in 10% NaOH solution (15 ml) and warmed at 80°C for 12 hours. After cooling, the clear solution was extracted with ethyl acetate and the aqueous phase was acidified carefully with 10% HCl solution. The precipitate was collected by filtration, washed with cold water and dried in a desiccator, 1.77 g of white powder (95%), mp 304-305°C (dec); FT-IR (KBr) 1740 cm⁻¹; ESP-MS (m/z): 301 (M+H)⁺; ¹³C NMR (50 MHz, D₂O+K₂CO₃) δ: 67.5, 95.1, 160.3, 167.6.

tert-Butyl 7-Amino-deacetoxycephalosporanate 1,1-Dioxide (8, R=H)

The reaction was carried out starting from 6 as it is described for tert-butyl 7-amino-cephalosporanate 1,1-dioxide (7). Yield 77%; FT-IR (KBr) v_max 3414, 1754, 1712, 1652 cm⁻¹; [α]_D³+14.7 (c 1.11, CHCl₃); ESP-MS m/z: 303 (M+H)⁺, 301 (M-H)⁻.

General Procedure for the Acylation of β-Lactam Esters

The suspension of acid 3 (0.20 mmol) in SOCl₂ (2 ml) was refluxed for 2 hours under Ar. The resulting clear mixture was evaporated and co-evaporated with abs. benzene (3 X 5 ml). The crude acyl chloride 4 was dissolved in abs. dichloromethane (2 ml) and added dropwise to the cooled solution of a β-lactam ester (0.60 mmol) in dichloromethane (2 ml) and abs. pyridine (1.20 mmol). The stirred mixture was allowed to warm up to r.t. (2 hours), diluted with dichloromethane, extracted with 10% NaHSO₄, sat. NaHCO₃ solutions and brine, dried and purified by column chromatography or preparative TLC.

tert-Butyl 7-(3,5-Bis-(((6R,7R)3-acetoxymethyl-4-tert-butoxycarbonyl-1,1-dioxo-cephem-7-ylcarbamoyl)-methoxy))-phenoxyacetamido Acetoxycephalosporanate (9)

Starting from 5, yield 50%, mp 166-167°C (dec); FT-IR (KBr) v_max 1786, 1728, 1602, 1522 cm⁻¹; [α]_D³+26.1 (c 0.57, CHCl₃); ESP-MS m/z: 303 (M+H)⁺, 301 (M-H)⁻.

tert-Butyl 7-(3,5-Bis-(((6R,7R)3-acetoxymethyl-4-carboxy-cephem-7-ylcarbamoyl)-methoxy))-phenoxyacetamido Acetoxycephalosporanate Tripotassium salt (10)

Starting from 9, yield 72%; FT-IR (KBr) v_max 1762, 1684, 1608, 1558, 1540 cm⁻¹; [α]_D³+77.9 (c 0.97, H₂O); ESP-MS: m/z 1061 (M-H)⁻.

tert-Butyl 7-(3,5-Bis-(((6R,7R)4-carboxy-3-methyl-cephem-7-ylcarbamoyl)-methoxy))-phenoxyacetamido Deacetoxycephalosporanate Acid Tripotassium Salt (11)

Starting from 11, yield: 82%; FT-IR (KBr) v_max 1750, 1684, 1602, 1558, 1540 cm⁻¹; [α]_D³+30.2 (c 0.94, H₂O); ESP-MS m/z: 906 (M+NH₄)⁺, 911 (M+Na)⁺, 887 (M-H)⁺.
7-(3,5-Bis-(((6R,7R)-3-acetoxymethyl-4-carboxy-1,1-dioxo-cephem-7-ylcarbamoyl)-methoxy))-phenoxyacetamido Acetoxycephalosporanic Acid 1,1-Dioxide Tripotassium Salt (14)

Starting from 13, yield 78%; FT-IR (KBr) \( \nu_{\text{max}} \) 1784, 1684, 1614, 1522 cm\(^{-1}\); \([\alpha]^{24}_D + 24.7\) (c 0.85, H\(_2\)O); ESP-MS: \( m/z \) 1157 (M–H)\(^-\).

7-(3,5-Bis-(((6R,7R)-4-carboxy-1,1-dioxo-3-methyl-cephem-7-ylcarbamoyl)-methoxy))-phenoxyacetamido deacetoxycephalosporanic Acid 1,1-Dioxide Tripotassium Salt (16)

Starting from 15, yield 81%; FT-IR (KBr) \( \nu_{\text{max}} \) 1772, 1684, 1608, 1558, 1540 cm\(^{-1}\); \([\alpha]^{24}_D + 46.2\) (c 1.23, H\(_2\)O); ESP-MS \( m/z \): 983 (M–H)\(^-\), 491 (M–H)\(^2-\).

Acknowledgements

The authors thank the Hungarian Research Foundation for financial support through grants OTKA T19338, OTKA T30138, OTKA T02975. Thanks are due to Professor F. Hernádi and A. Koncz for the biological tests and for A. Ágocs for his help in the preparation of the manuscript.

References

7) Patch, R. J.; H. Chen & C. Pandit: Multivalent templated saccharides: convenient syntheses of spacer-linked 1,1'-bis and 1,1',1"-tris-\( \beta \)-glycosides by the glycal epoxide glycosylation method. J. Org. Chem. 62: 1543–1545, 1997