Pyrocoll, an Antibiotic, Antiparasitic and Antitumor Compound Produced by a Novel Alkalophilic Streptomyces Strain

ANKE DIETER, ANDREAS HAMM, HANS-PETER FIEDLER, MICHAEL GOODFELLOW, WERNER E. G. MÜLLER, RETO BRUN, WINFRIED BEIL and GERHARD BRINGMANN

a Mikrobiologisches Institut, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
b Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
c School of Biology, University of Newcastle, Newcastle upon Tyne, NE1 7RU, United Kingdom
d Abteilung Angewandte Molekularbiologie, Institut für Physiologische Chemie, Universität Mainz, Duesbergweg 6, D-55099 Mainz, Germany
e Schweizerisches Tropeninstitut, Socinstrasse 57, CH-4002 Basel, Switzerland
f Institut für Pharmakologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany

(Received for publication March 24, 2003)

A new secondary metabolite was detected in the culture extract of Streptomyces sp. AK 409 by HPLC-diode-array screening. The metabolite was identified as pyrocoll, which is known to be a constituent of cigarette smoke. Pyrocoll is known as a synthetic compound, but until now had not been isolated as a natural product from a microorganism. The compound showed biological activity against various Arthrobacter strains, filamentous fungi, several pathogenic protozoa, and some human tumor cell lines.

Alkalophilic and alkalitolerant actinomycetes were included in our screening program to detect novel secondary metabolites by HPLC-diode array analysis (HPLC-DAD). Strain AK 409, which was isolated from steel waste tip soil, became attractive to us because of the appearance of two prominent metabolites in a culture extract which had retention times of 3.8 and 7.9 minutes. These metabolites did not correspond to any of the 700 reference compounds stored in our HPLC-UV-Vis-Database. The compound with a retention time of 3.8 minutes was identified by determining the chemical structure as pyrrole-2-carboxylic acid (1), a known natural product. The main compound had a retention time of 7.9 minutes, showed UV maxima at 236, 276, 308 and 320 nm, and was identified as pyrocoll (2), i.e. the cyclic condensation product of two molecules of 1.

This report deals with the taxonomy of the producing strain, its fermentation, the isolation and structural elucidation of the metabolites, and some as yet unknown biological properties of pyrocoll.

Materials and Methods

General Experimental Procedures

Melting points were determined on a Reichert-Jung Thermovar hot-plate and are uncorrected. IR spectra were taken on a Perkin-Elmer 1429 spectrophotometer; 1H NMR (600.1 MHz) and 13C NMR (150.9 MHz) spectra were measured on a Bruker DMX 600 instrument using CDCl3 (δ 7.26 and 77.01) and CD3OD (δ 3.30 and 49.01) as solvents and internal 1H and 13C standards. Proton-detected, heteronuclear correlations were measured using HMOC

* Art. No. 29 in 'Biosynthetic Capacities of Actinomycetes', Part 8 in 'Diversity and Biosynthesis of Secondary Metabolites'. Art. No. 28 and Part 7, respectively: See ref. 1

* Corresponding authors: hans-peter.fiedler@uni-tuebingen.de; bringmann@chemie.uni-wuerzburg.de
Microorganisms

The producing strain AK 409 was isolated from a steel waste tip soil sample collected at Consett, County Durham, UK. The strain is deposited in the culture collection of the University of Newcastle.

Standard strains for testing the biological activity spectrum and minimal inhibition concentrations were obtained from the ATCC, CBS, DSMZ and the stock collections of our laboratories in Tubingen and Basle.

Taxonomy of the Producing Strain

The organism was inoculated onto oatmeal agar (ISP3), incubated at 25°C for 3 weeks, and examined by eye to determine aerial spore mass colour, substrate mycelium pigmentation and the colour of any diffusible pigments; the colours were recorded using National Bureau of Standards (NBS) Colour Name Charts. Plugs of agar taken from the ISP 3 agar plate were used to record spore chain morphology and spore ornamentation by scanning electron microscopy following the procedure described by O’DONNELL et al.

The isomeric form of diaminopimelic acid (A2pm) was determined by TLC of a whole-organism hydrolysates following a standard procedure. 16S rDNA amplification and sequencing were carried out after KIM et al.

Fermentation

Batch fermentations of Streptomyces AK 409 were carried out in a 10-liter stirred tank fermenter (type Biostat E; B. Braun Melsungen International). The medium consisted of starch 1%, glucose 1%, glycercol 1%, corn steep powder 0.25%, casein peptone 0.5%, yeast extract 0.2%, and NaCl 0.1% in tap water. The fermenter was inoculated with 5 vol.% of shake cultures, grown in 500-ml Erlenmeyer flasks with one baffle for 48 hours on a rotary shaker at 120 rpm and 27°C using the same medium. The fermentation was carried out for 72 hours at 27°C with an aeration rate of 0.4vvm and an agitation of 250 rpm. The pH of the culture was kept constant at pH 9 during the cultivation.

Isolation

Hyphlo Super-cel (2%) was added to the fermentation broth, which was separated by multiple sheet filtration into culture filtrate and mycelium. The culture filtrate (8 liters) was adjusted to pH 9 (5 N NaOH) and extracted three times with 2 liters of cyclohexane (extract I). Extract I, which contained 2, was concentrated in vacuo to dryness. The aqueous layer was adjusted to pH 5 (5 N HCl) and re-extracted three times with EtOAc (extract II). Extract II, which contained compound 1, was concentrated in vacuo to dryness.

Extract I (containing 2) was dissolved in a small volume of MeOH and purified by preparative reversed-phase HPLC using a stainless steel column (250×16 mm) filled with 10-μm Nucleosil-100 C-18 (Maisch) and linear gradient elution with 0.5% formic acid-MeOH, starting from 40% MeOH to 80% MeOH within 20 minutes at a flow rate of 24 ml/minute. The preparative system consisted of two high pressure pumps (Sepapress HPP-200/100; Kronwald), a gradient unit (Sepacon GCU-311), and a Valco preparative injection valve (Mod. 6UW; VICI) with a 5 ml sample loop. The UV absorbance of the eluate was monitored at 319 and 340 nm using a Gilson spectrophotometer Mod. 116 equipped with a preparative cell. After concentration in vacuo to dryness, 2 was obtained as a white powder, which is soluble in acetone and moderately soluble in MeOH.

Extract II (containing 1) was dissolved in a small volume of MeOH and purified by exclusion chromatography using Fractogel TSK HW-40 F, followed by preparative reversed-phase HPLC using 10-μm Nucleosil-100 C-18 material and linear gradient elution with 0.5% formic acid-MeOH starting from 20% MeOH to 60% MeOH within 20 minutes at a flow rate of 24 ml/minute. The UV absorbance of the eluate was monitored at 260 and 270 nm. After concentration in vacuo to dryness, compound 1 was obtained as a white powder, which was found to be soluble in MeOH.

HPLC-DAD Analyses

The chromatographic system consisted of an HP 1090M liquid chromatograph equipped with a diode-array detector and HP Kayak XM 600 ChemStation and HPLC-software revision A.08.03 (Agilent Technologies). Multiple wavelength monitoring was performed at 210, 230, 260, 280, 310, 360 and 435 nm. The spectrum measured was from 200 to 600 nm with a 2-nm step and a sampling rate of 640 mseconds.

A 5-ml sample of the fermentation broth was adjusted to pH 5 (1 N HCl) and extracted with the same volume of EtOAc. After centrifugation, the organic layer was concentrated to dryness in vacuo and the residue was resuspended in 0.5 ml MeOH. 10 μl of the samples were injected onto an HPLC column (125×4.6 mm), fitted with a guard-column (20×4.6) which were packed with 5-μm
Nucleosil-100 C-18 (Maisch). The samples were analyzed by linear gradient elution using 0.1% ortho-phosphoric acid as solvent A and acetonitrile as solvent B at a flow rate of 2 ml/minute. The gradient was from 0% to 100% solvent B in 15 minutes with a 1-minute hold at 100% solvent B, followed by a 5-minute post-time at initial conditions.

Structure Elucidation

Pyrorole-2-carboxylic acid (1): All physical and spectroscopic data were identical to those described in the literature and to a sample purchased from Aldrich; colorless crystals (EtOAc - CH₂Cl₂): mp 190°C [ref. 3 (EtOAc - CH₂Cl₂): 190°C]; ¹H NMR (600 MHz, CD₂OD) δ 6.17 (1H, dd, J=3.8, 2.6 Hz, 4-H), 6.86 (1H, dd, J=3.8, 1.5 Hz, 3-H), 6.93 (1H, dd, J=2.6, 1.5 Hz, 5-H); ¹³C NMR (150 MHz, CD₂OD) δ 101.7 (C-4), 116.7 (C-5), 123.8 (C-2), 124.5 (C-3), 164.6 (2-COOH); EIMS m/z 187 [M+1]+ (11), 186 [M]+ (100), 158 (94), 114 (94), 100 (94), 65 (94), 66 (94), 73 (94), 65 (66), 55 (66), 45 (66), 34 (66).

Pyrocoll (2): All physical and spectroscopic data were completely consistent to those described in the literature; mp 270°C [ref. 10: 272–273°C]; IR νmax (NaCl) 3115 (s), 2930 (m), 2864 (m), 1699 (s), 1650 (m), 1560 (m), 1460 (s), 1412 (m), 1319 (m), 1220 (w), 737 (m) cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.48 (1H, dd, J=3.5, 3.1 Hz, 4-H), 7.37 (1H, dd, J=3.7, 1.5 Hz, 3-H), 7.72 (1H, dd, J=3.0, 1.5 Hz, 5-H); ¹³C-NMR (150 MHz, CDCl₃) δ 114.7 (C-4), 123.4 (C-3), 123.7 (C-5), 124.3 (C-2), 150.9 (2-COOH); EIMS m/z 112 [M+1]+ (11), 111 [M]+ (100), 158 [M–CO]+ (5), 130 [M–2CO]+ (13), 93 [CH₃NO]+ (49), 65 (19); HRMS: 186.04293 (C₁₀H₆N₂O₂ calcd. 186.04294).

Improved synthesis of pyrocoll (2): To a solution of 100 mg (0.90 mmol) 1 in 20 ml CH₂Cl₂, 204 mg (0.99 mmol) DCC and 10 mg (0.09 mmol) DMAP were added carefully, (49), 65 (19); HRMS: 186.04293 (C₁₀H₆N₂O₂ calcd. 186.04294).

Biological Assays

The antimicrobial spectrum of pyrocoll was determined by an agar plate diffusion assay. 20 μl of the samples were added on filter discs (6 mm diameter). The test plates were incubated for 24 hours at the temperature that permitted optimal growth of the test organisms.

For determining the minimal inhibition concentration of pyrocoll the broth dilution method was used. The antibiotic was dissolved in DMSO; the final DMSO concentrations in the cultures did not exceed 5%. The test organisms were grown in a medium consisting of nutrient broth 0.8%, NaCl 0.5% and deionized water. 10⁶ cells/ml were used as inoculum, and growth inhibition was evaluated after incubation for 24 and 48 hours at 27°C on a rotary shaker.

The inhibitory activity of 2 on the growth of tumor cells was tested according to NCI guidelines, with human cell lines from gastric adenocarcinoma (HMO2), breast carcinoma (MCF 7), and hepatocellular carcinoma (HepG2). Cells were grown in 96-well microtiter plates in RPMI 1640 with 10% fetal calf serum in a humidified atmosphere of 5% CO₂ in air. After 24 hours incubation, compound 2 (0.1–10 μg/ml) was added to the cells. Stock solutions were prepared in DMSO. The final DMSO concentration in the cultures was 0.1%. After a 48-hour incubation period the cells were fixed, and the cell protein determined with sulforhodamine B.

The cytostatic potential of 2 was determined in cell culture assays using modifications of the tetrazolium-formazan assay system with L5178y mouse lymphoma cells (ATCC CRL 1722), HeLa S3 human epithelial carcinoma cells (ATCC CCL 2.2) or PC-12 rat adrenal pheochromocytoma cells (ATCC CRL 1721) were used for the experiments. L5178y; HeLa S3 were grown in RPMI-medium, supplemented with 10% fetal calf serum and PC-12 cells in RPMI-medium enriched with 10% horse serum - 3% fetal calf serum. For the dose-response experiments, 200 μl cultures were initiated by inoculation of 5×10³ cells/ml (L5178y), 3×10³ cells/ml (HeLa S3) or 50×10³ cells/ml (PC-12) and the preparations incubated at 37°C for 72 hours in a fully humidified atmosphere of 5% CO₂. Compound 2 was added to the cultures at time zero. At the time of termination, after 72 hours, the cells were still in the logarithmic proliferation phase. They were then treated by the addition of 50 μl of a 2 mg/ml solution of MTT (Sigma no. M-2128); after a further incubation period of 3 hours, 50 μl of aqueous NaDODSO₄ (20%) was added and the optical density determined at 595 nm using an ELISA reader. For the statistical evaluation the student’s t-test was applied; the 50% inhibition of cell growth (ED₅₀ value) was calculated by logistic regression.

Plasmodium falciparum: Antiplasmodial activity was determined using the NF54 strain of *P. falciparum* (sensitive to all known drugs) and the K1 strain (resistant to chloroquine and pyrimethamine). A modification of the [³H] hypoxanthine incorporation assay was used. Briefly, infected human red blood cells were exposed to serial drug dilutions in microtiter plates for 48 hours at...
37°C in a gas mixture with reduced oxygen and elevated CO₂ concentrations. [³H] Hypoxanthine was added to each well and after further incubation for 24 hours the wells were harvested on glass fiber filters and counted in a liquid scintillation counter. The IC₅₀ value was calculated from the sigmoidal inhibition curve. The assays were run in duplicate and repeated at least once.

Trypanosoma cruzi: Rat skeletal myoblasts (L-6 cells) were seeded in 96-well microtiter plates at 2000 cells/well/100 µl in RPMI 1640 medium with 10% FBS and 2 mM L-glutamine. After 24 hours 5000 trypomastigotes of *T. cruzi* (Tulahuen strain C2C4 containing the galactosidase (Lac Z) gene) were added in 100 µl per well with 2× of a serial drug dilution. The plates were incubated at 37°C in 5% CO₂ for 4 days. The substrate CPRG/Nonidet was added to the wells for measurement of the IC₅₀. The color reaction which developed during the following 2-4 hours was read photometrically at 540 nm. IC₅₀ values were calculated from the sigmoidal inhibition curve. Cytotoxicity was assessed in the same assay using non-infected L-6 cells and the same serial drug dilution. The MIC was determined microscopically after 4 days.

Trypanosoma b. rhodesiense: Minimum Essential Medium (50 µl) supplemented according to BALTZ et al.¹⁷) with 2-mercaptoethanol and 15% heat-inactivated horse serum was added to each well of a 96-well microtiter plate. Serial drug dilutions were added to the wells followed by 50 µl of a trypanosome suspension (*T. b. rhodesiense* STIB 900) and the plate incubated at 37°C under a 5% CO₂ atmosphere for 72 hours. Alamar Blue (10 µl) was then added to each well and the incubation continued for a further 2-4 hours. The plate was then read using a Millipore Cytofluor 2300 at an excitation wavelength of 530 nm and an emission wavelength of 590 nm¹⁸). Fluorescence development was expressed as a percentage of the control, and IC₅₀ values determined.

Leishmania donovani: Mouse peritoneal macrophages were seeded in RPMI 1640 medium with 10% heat-inactivated FBS in Lab-tek 16-chamber slides. After 24 hours *L. donovani* amastigotes (strain: MHOM-ET-67/L82) were added at a ratio of 3:1 (amastigotes to macrophages). The medium containing free amastigotes was replaced by fresh medium 4 hours later. The next day the medium was replaced by fresh medium containing different drug concentrations. The slides were incubated at 37°C under a 5% CO₂ atmosphere for 96 hours. The medium was then removed, and the slides fixed with MeOH and stained with Giemsa. The ratio of infected to non-infected macrophages was determined microscopically, expressed as a percentage of the control and the IC₅₀ value calculated by linear regression.

Results

Taxonomy of the Producing Strain

Strain AK409 produced a white to grey aerial spore mass and a yellow-brown pigmented substrate mycelium on oatmeal agar; diffusible pigments were not formed. Whole-organism hydrolysates were rich in LL-A₂pm. Comparison of the almost complete 16S rDNA sequence of the strain with available corresponding sequences of representative actinomycetes showed that it forms a distinct phyletic within the *Streptomyces griseus* 16S rDNA subclade.

Fermentation and Isolation

Batch fermentations were carried out in a 10-liter stirred tank fermenter using a complex medium. The growth of strain AK 409 was significantly increased at alkaline pH values. During pH-static fermentations at pH 9, the culture reached a maximal biomass of 32 vol-% after 40 hours of incubation, and maximal pyrocoll production reaching 23 mg/litre was obtained after 49 hours. The HPLC analysis of a culture extract is shown in Fig. 1.

Pyrocoll (2) was isolated from the culture filtrate by extraction with cyclohexane at pH 9, and was purified by preparative reversed-phase HPLC using Nucleosil C-18 material and linear gradient elution with 0.5% formic acid-MeOH. After concentration to dryness in vacuo, pyrocoll (2) was obtained as a white powder which is soluble in Me₂CO and moderately soluble in MeOH.

Pyrrole-2-carboxylic acid (1) was isolated from the culture filtrate by extraction with EtOAc at pH 5 followed by subsequent purification using size-exclusion chromatography on Fractogel TSK HW-40, and preparative reversed-phase HPLC on Nucleosil C-18 material and linear gradient elution with 0.5% formic acid-MeOH. After concentration to dryness in vacuo, pyrrole-2-carboxylic acid (1) was obtained as a white powder.

Structural Elucidation

Already by its typical MS fragmentation pattern¹⁹), compound 1 was identified as the well known pyrrole-2-carboxylic acid. All physical and spectroscopic data were identical to those reported in the literature² and to a sample purchased from Aldrich.

The second compound isolated had the molecular
formula C₁₀H₆N₂O₂, as deduced by HRMS of the [M]+ peak. The ¹H NMR spectrum showed the signals of three neighboring aromatic hydrogens (δ 6.48, 7.37, and 7.72) (see Fig. 4). The ¹³C NMR spectrum revealed resonances corresponding to a carbonylic carbon belonging to an amide function (δ 150.9), three tertiary (δ 114.7, 123.4, 123.7) and one quaternary (δ 124.3) aromatic carbons. The resulting molecular formula (C₅H₃NO) compared to the one mentioned above, as indicated by HRMS, suggested that the molecule was symmetric. A first hint at the structure of the molecular moiety was given by the small coupling constants of the aromatic protons, indicating a pyrrole-system. The cyclic structure was confirmed by the HMBC experiment, because every hydrogen showed interactions to all of the carbon atoms. Because of the spin system of three neighboring protons the carbonyl had to be located at C-2 of the pyrrole system. The two molecular moieties had to be coupled by linkages between the carbonyl C-atom of the one and the pyrrole nitrogen of the other portion for the ‘dimer’ to attain the afore-mentioned symmetry and to explain the HMBC interaction between 5-H and the carbonyl-carbon. Thus, the second compound had to have structure 2 (Fig. 2). This diketopiperazine has previously been described as a synthetic product¹⁰ and as a constituent
of cigarette smoke20 (named pyrocoll), but has never been reported previously as a natural product. All physical and spectroscopic data were completely consistent to those described in the literature. For additional proof of structure, compound \textit{2} was 'biomimetically' synthesized from \textit{1} in one step with a 91.3\% yield. For previous preparations of \textit{2} by flash vacuum pyrolysis of \textit{1} or via the pyrrolecarbonyl chloride, see refs. 10 and 21. Given the presence of \textit{1} in the culture broth, a possible spontaneous formation of \textit{2} from \textit{1} was excluded by identifying \textit{2} as a genuine product already present in the culture filtrate by HPLC.

Biological Properties

A wide variety of Gram-positive and Gram-negative bacteria and fungi were tested using the agar plate diffusion assay and broth dilution method. Pyrocoll (2) showed a good antibacterial activity in the agar plate diffusion assay especially against various Arthrobacter strains in the agar plate diffusion assay, whereas filamentous fungi like Botrytis cinerea, Aspergillus viridii nutans and Paecilomyces variotii were less sensitive, as shown in Table 1. The minimal inhibitory concentrations detected in the broth dilution assay are summarized in Table 2. Yeasts such as Saccharomyces cerevisiae, Rhodotorula rubra and Candida albicans were not sensitive in either assays.

Pyrocoll (2) caused concentration-dependent inhibition of cell growth in HM02, HepG2 and MCF 7 cells with IC\textsubscript{50}-values of 0.28, 0.42 and 2.2 \(\mu\text{g/ml}\), respectively. \textit{2} (10 \(\mu\text{g/ml}\)) did not reduce the cell count present at time point zero (Table 3). \textit{2} displayed a strong inhibitory potency on the proliferation of L5178y lymphoma cells; an ED\textsubscript{50}-value of 0.65\(\pm\)0.09 \(\mu\text{g/ml}\) was determined. Less pronounced was this effect on HeLa S3 cells; their proliferation was inhibited by 50\% at 2.1\(\pm\)0.3 \(\mu\text{g/ml}\). Inhibition by pyrocoll was not recorded in the assays using PC-12 cells below a concentration of 20 \(\mu\text{g/ml}\).

Pyrocoll (2) exhibits moderate activity against Plasmodium falciparum, the pathogenic agent of malaria22. An IC\textsubscript{50}-values of 1.19 \(\mu\text{g/ml}\) (standard chloroquine

<table>
<thead>
<tr>
<th>Table 1. Antibacterial and antifungal spectrum of pyrocoll (2) determined by the agar plate diffusion assay at various concentrations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arthrobacter aurescens DSM 20166</td>
</tr>
<tr>
<td>Arthrobacter globiformis DSM 20124</td>
</tr>
<tr>
<td>Arthrobacter oxydans DSM 6612</td>
</tr>
<tr>
<td>Arthrobacter pascens DSM 20545</td>
</tr>
<tr>
<td>Rhodococcus erythropilis DSM 1069</td>
</tr>
<tr>
<td>Aspergillus viridii nutans CBS 12756</td>
</tr>
<tr>
<td>Botrytis cinerea Tü 157</td>
</tr>
<tr>
<td>Paecilomyces variotii Tü 137</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Minimal inhibition concentration (MIC) of pyrocoll (2) determined by the broth dilution method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
</tr>
<tr>
<td>Arthrobacter aurescens DSM 20166</td>
</tr>
<tr>
<td>Arthrobacter globiformis DSM 20124</td>
</tr>
<tr>
<td>Arthrobacter oxydans DSM 6612</td>
</tr>
<tr>
<td>Arthrobacter pascens DSM 20545</td>
</tr>
<tr>
<td>Rhodococcus erythropilis DSM 1069</td>
</tr>
</tbody>
</table>
0.078 µg/ml) was recorded against the chloroquine resistant K1 strain. Leishmania donovani is the pathogen of visceral leishmaniasis (‘Kala Azar’); related protozoan parasites are Trypanosoma cruzi, the causative agent of Chagas disease, and T. brucei rhodesiense, the pathogen of African sleeping sickness. 2 displayed only moderate activity against T. b. rhodesiense (IC50 1.97 µg/ml relative to the standard melarsoprol IC50 of 0.001 µg/ml) and against T. cruzi (IC50 17.6 µg/ml compared to the standard benznidazole IC50 1.27 µg/ml). Due to the cytotoxic effect of 2 on the host cells of Leishmania donovani, murine macrophages, it was not possible to determine the antileishmanial activity. The cytotoxic effects of pyrocoll on mammalian cells is supported by the IC50 value of 7.1 µg/ml for L-6 cells.

Discussion

The chemical and morphological properties shown by the producing strain AK 409 are consistent with its classification in the genus *Streptomyces*23,24). Its assignment to this genus was underpinned by the 16S rDNA data which showed that the strain forms a distinct branch in the evolutionary radiation encompassed by *Streptomyces griseus* and related species25).

The structure of the secondary metabolite pyrocoll (2) shows two characteristic features: the pyrrole ring and the central diketopiperazine core. In searches for other anticancerogenic, antifungal, or antibacterial metabolites with one of these two structural elements we have found pyrrole ring and diketopiperazine ring containing structures. Examples are the pyrrolic compound reductiline26), and the diketopiperazine antibiotic 593A27) with antifungal properties. Looking for a structurally similar compound we found the metabolite PD 12537528), an antibiotic having three rings like in pyrocoll, but without the diketopiperazine structure. Interestingly, this compound did not show antibacterial or antitumoural activities. This fact indicates a correlation between biological activity and diketopiperazine structure. It would be worthwhile synthesizing pyrocoll derivatives for structure-activity relationships.

Acknowledgements

A.D. wishes to thank Graduiertenkolleg Mikrobiologie, Universität Tübingen, for a doctoral scholarship, and Rainer-und-Maria-Teufel-Stiftung for additional financial support. This work was supported by the Fonds der Chemischen Industrie (fellowship to A.H. and supplies). We acknowledge generous support for this work by the BMBF Bundesrepublik Deutschland (FKZ 03 F0345E; ‘Biotec Marin: Molekulare Biotechnologie und Wirkstoffe mariner Schwämme sowie Schwamm-assoziiert Bioorganismen’), and support the European Commission (ACTAPARM, QLK3-CT-2001-01783). The authors thank Dr. A. C. WARD and Mrs. R. BROWN, University of Newcastle upon Tyne, for help with the microbiological work, Mr. G. GREWE, Universität Tübingen, for technical assistance with fermentations, and Agilent Technologies, Waldbronn, Germany, for HPLC-software support.

Table 3. Activity (µg/ml) of pyrocoll (2) against selected human tumor cell lines.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>GI50</th>
<th>TGI</th>
<th>LC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMO2</td>
<td>0.28 ± 0.02</td>
<td>5.1 ± 1.3</td>
<td>>10</td>
</tr>
<tr>
<td>HepG2</td>
<td>0.42 ± 0.04</td>
<td>>10d</td>
<td>>10</td>
</tr>
<tr>
<td>MCF 7</td>
<td>2.2 ± 0.35</td>
<td>>10d</td>
<td>>10</td>
</tr>
</tbody>
</table>

a Drug concentration causing 50% growth inhibition
b Drug concentration causing 100% growth inhibition
c Drug concentration causing 50% reduction of the cells present at time point zero, i.e. at 24 hours
d 2 caused 77% growth inhibition at 10 µg/ml
e 2 caused 70% growth inhibition at 10 µg/ml
References

6) National Bureau of Standards: ISCC-NBS Color-Name Charts Illustrated with Centroid Colors (Supplement to National Bureau of Standards USA Circular 553), National Bureau of Standards, USA, 1964

