Growth Inhibition Dependent on Reactive Oxygen Species Generated by C9-UK-2A, a Derivative of the Antifungal Antibiotic UK-2A, in Saccharomyces cerevisiae

KEN-ICHI FUJITA*, KAZUNORI TANI, YOSHINOSUKE USUKI, TOSHO TANAKA and MAKOTO TANIGUCHI

Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

(Received for publication April 6, 2004)

UK-2A is a potent antifungal antibiotic and its structure is highly similar to that of antimycin A3 (AA). UK-2A and AA inhibit mitochondrial electron transport at complex III. C9-UK-2A, which has been prepared to improve the duration of the antifungal activity of UK-2A, shows durable fungicidal activities against various species of fungi and induces both membrane injury and the generation of cellular reactive oxygen species (ROS) against Rhodotorula mucilaginosa IFO 0001 cells. We found that C9-UK-2A inhibited the vegetative growth of Saccharomyces cerevisiae IFO 0203 cells accompanying cellular ROS generation in Sabouraud dextrose (SD) medium, which contained a fermentable carbon source. The ROS generation was completely restricted by pretreatment with a lipophilic antioxidant α-tocopherol. In addition, the pretreatment with the antioxidant protected against the growth inhibition induced by C9-UK-2A. C9-UK-2A also induced ROS generation in isolated mitochondria of the S. cerevisiae cells. The addition of both a complex I inhibitor rotenone and a complex II inhibitor thionyltrifluoroacetone reduced ROS generation induced by C9-UK-2A in the whole cells and the isolated mitochondria. The addition of the inhibitors of complex III, AA or myxothiazol, or of complex IV, KCN, did not reduce ROS generation. These results suggest that C9-UK-2A induces ROS generation due to the blockade of electron flow at complex III, thereby inhibiting the growth of S. cerevisiae in SD medium.

An antifungal antibiotic, UK-2A, is similar to antimycin A3 (AA) in both chemical structure and inhibitory activity against the electron transport at complex III in mitochondria. The direct binding sites of UK-2A and AA to complex III have been reported to be associated with a 3-hydroxy-4-methoxy-pyridine-2-carboxylyl and a 3-formylamino-salicylyl group, respectively. The nine-membered dilactone rings of UK-2A and AA are thought to be needed for their hydrophobicity in order to pass through biomembrane barriers and for the tight binding of the molecules to complex III. However, the antifungal effects of UK-2A and AA are temporary because of enzymatic fragility of the dilactone portions.

We have replaced the dilactone portion with stable n-alkyl and isoprenyl residues in UK-2A derivatives to improve the poor durability of the antifungal activity. C9-UK-2A shows the most durable and relatively potent antifungal activity among the derivatives. In this study, we found that C9-UK-2A expressed a growth inhibitory effect on Saccharomyces cerevisiae IFO 0203 cells in Sabouraud dextrose (SD) medium, which contains glucose as a respiratory substrate. UK-2A and AA do not express growth inhibitory effects on the yeast cells in such a medium. As S. cerevisiae is a facultative anaerobe, the vegetative growth of the yeast is possible through the acquisition of energy by alcoholic fermentation even when respiration is blocked. Therefore, as the action of C9-UK-2A on the yeast cannot be explained only by the inhibition of respiration, we investigated in detail the mode of action of C9-UK-2A against S. cerevisiae IFO 0203 cells.

Materials and Methods

Strain
A culture S. cerevisiae IFO 0203 was purchased from the Institute for Fermentation, Osaka (Osaka, Japan). The cells of this yeast strain were grown in a SD medium (4%
glucose and 1% Difco Bactopeptone) at 30°C unless stated otherwise.

Chemicals
C9-UK-2A was prepared by a previously described method. Other reagents were of commercial grade. In this study, all antibiotics, including UK-2A derivatives, were dissolved in N,N'-dimethylformamide prior to biochemical experiments.

Growth Study
The cells of *S. cerevisiae* IFO 0203 were grown overnight in SD medium with vigorous shaking and were diluted into the same medium to give approximately 10^7 cells/ml. Aliquots of this cell suspension were dispensed into each L-tube. After a 15-minute incubation with shaking at 30°C, C9-UK-2A was added to the culture and then the cultivation was continued further. Aliquots of the culture were withdrawn at regular intervals to measure cell turbidity at 610 nm. The cell suspension (10^7 cells/ml) gave a turbidity value of approximately 1.0 at 610 nm.

Cellular Respiration Study
Exponentially growing cells of *S. cerevisiae* IFO 0203 were harvested, washed with 0.9% NaCl and then suspended in 50 mM phosphate buffer (pH 7.0) containing 1% glucose. After 1-hour incubation with shaking at 30°C, the cells were washed and resuspended in the same buffer to give 10^7 cells/ml. At appropriate intervals, aliquots of the suspension were withdrawn. Cellular respiration of the yeast cells in the suspension with or without C9-UK-2A was measured polarographically at 30°C using Hansatech oxygen electrode units.

Measurement of ROS Generation
Cellular ROS generation was determined by a method dependent on the intracellular deacetylation and the oxidation of 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) to the fluorescent compound 2',7'-dichlorodihydrofluorescein (DCF). After preincubation of the yeast cells (10^7 cells/ml) in SD medium with 40 μM DCFH-DA at 30°C for 60 minutes, aliquots of the cell suspensions (1.0 ml) were withdrawn and further treated with each chemical for the indicated time and then washed and resuspended in 100 μl of phosphate-buffered saline. Fluorescence intensity of DCF in the cell suspension (100 μl) containing 10^7 cells was read with a Cytofluor 2300 fluorescence spectrophotometer (Millipore Co.) with excitation at 480 nm and emission at 530 nm. The arbitrary units was directly based on fluorescence intensity.

Preparation of Yeast Mitochondria
Mitochondria of *S. cerevisiae* IFO 0203 were isolated by the method of Glück and Pon. Protein content was measured by the method of Bradford using bovine serum albumin as a standard.

Effect of C9-UK-2A on Yeast Mitochondrial Respiration
The effects of C9-UK-2A on yeast mitochondrial respiration fully stimulated by an uncoupler FCCP were observed by the method of Ueki and Taniguchi. Mitochondrial respiration of the yeast in the suspension was measured polarographically at 30°C using Hansatech oxygen electrode units.

Measurement of Glutathione
The exponentially growing yeast cells (10^7 cells/ml) derived from an overnight culture were further incubated in SD medium with or without C9-UK-2A at 30°C for 60 minutes, washed, resuspended in ice-cold 8 mM HCl containing 1.3% 5-sulfosalicylic acid, and then broken with glass beads by repeated vortexing. The supernatant obtained after removing the beads and cell debris by centrifugation at 5,000 × g for 15 minutes at 4°C was used as the cytosolic fraction. Total glutathione content, the sum of reduced (GSH) and oxidized (GSSG) glutathione was estimated as follows. GSSG in the cytosolic fraction was converted to GSH by glutathione reductase and GSH was then quantified the spectrophotometric monitoring of 2-nitro-5-thiobenzoate formation from 5,5-dithiobis(nitrobenzoic acid). In the cytosolic fraction prepared for the measurement of GSSG, GSH was consumed beforehand by the treatment with 2-vinylpyridine at 30°C for 60 minutes and GSSG was then quantified as described above.

Results
Effect of C9-UK-2A on Growth
The growth inhibitory effect of C9-UK-2A on *S. cerevisiae* IFO 0203 cells is shown in Fig. 1. When exponentially growing cells in SD medium were exposed to C9-UK-2A at 25 or 50 μg/ml, the growth rate measured in terms of turbidity was slightly or significantly reduced, respectively. In addition, for the treatment with concentrations of C9-UK-2A higher than 100 μg/ml, reduction of the number of viable cells was not observed (data not shown). Thus, the action of C9-UK-2A on the yeast cells was not fungicidal but fungistastic.
Effect of C9-UK-2A on Cellular Respiration

UK-2A and AA inhibit mitochondrial electron transport at complex III resulting in the inhibition of cellular respiration\(^3\). Therefore, the effect of C9-UK-2A on cellular respiration of S. cerevisiae IFO 0203 was examined. When the yeast cell suspension was incubated with C9-UK-2A, the respiratory activity quickly decreased. Namely, at a concentration of 25 µg/ml, C9-UK-2A caused 92.7% loss of cellular respiration activity after 30 minutes of treatment (data not shown).

Effect of C9-UK-2A on Intracellular Glutathione Content

Glutathione, a primary antioxidant, accounts for the highest quantity of intracellular SH compounds in S. cerevisiae\(^14\). To determine whether C9-UK-2A confers oxidative stress on S. cerevisiae IFO 0203 cells, we calculated the GSH/GSSG ratio. In Table 1, the GSH/GSSG ratio in the cells treated with 50 µg/ml C9-UK-2A was 52% of that in control cells, indicating that C9-UK-2A confers oxidative stress on the yeast cells as well as 2 mM H\(_2\)O\(_2\). However, the decrease in the total glutathione induced by C9-UK-2A was less than that induced by 2 mM H\(_2\)O\(_2\). The oxidizing activity of C9-UK-2A was weaker than that of H\(_2\)O\(_2\).

Effect of C9-UK-2A on Cellular ROS Generation

C9-UK-2A induced ROS generation in a strict aerobic yeast R. muciraginosa IFO 0001\(^15\). We tested the effect of C9-UK-2A on cellular ROS generation in S. cerevisiae IFO 0203. As shown in Fig. 2(a), C9-UK-2A induced ROS generation in an almost dose-dependent manner. Moreover, C9-UK-2A induced ROS generation time-dependently (Fig. 2(b)).

Effect of α-TOH on ROS Generation Induced by C9-UK-2A

An naturally occurring lipophilic antioxidant α-tocopherol (α-TOH) can easily penetrate plasma membrane and suppress the lipid peroxidation of membranes\(^16\). We tested the effect of antioxidants on ROS generation induced by C9-UK-2A in S. cerevisiae IFO 0203 cells (Fig. 3). One mM α-TOH did not induce ROS generation when added alone. One hundred µM α-TOH suppressed C9-UK-2A-induced ROS generation to control level. On the other hand, a hydrophilic antioxidant, ascorbic acid, which hardly penetrates the plasma membrane of S. cerevisiae but acts on the outer surface of the plasma membrane\(^16,17\), did not suppress ROS generation (data not shown). These results suggest that the ROS generation induced by C9-UK-2A does not injure the outer leaflet of the plasma membrane but rather the internal leaflet and/or inside membranes.

Table 1. Effects of C9-UK-2A and hydrogen peroxide on total glutathione content and on the ratio of GSH (reduced form) to GSSG (oxidized form) in S. cerevisiae IFO 0203 cells.

<table>
<thead>
<tr>
<th>Addition</th>
<th>Conc. (µg/ml)</th>
<th>Total glutathione (nmol/10^7 cells)</th>
<th>GSH (nmol/10^7 cells)</th>
<th>GSSG (nmol/10^7 cells)</th>
<th>GSH/GSSG ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>2.26</td>
<td>2.20</td>
<td>0.06</td>
<td>36.7</td>
</tr>
<tr>
<td>C9-UK-2A</td>
<td>25</td>
<td>2.08</td>
<td>2.01</td>
<td>0.07</td>
<td>28.7</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.82</td>
<td>1.73</td>
<td>0.09</td>
<td>19.2</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>2 mM</td>
<td>1.16</td>
<td>1.10</td>
<td>0.06</td>
<td>18.3</td>
</tr>
</tbody>
</table>

S. cerevisiae IFO 0203 cells (10^7 cells) were grown with or without each chemical at 30°C for 1 hour in SD medium prior to measurement of glutathione content.
Protective Effect of α-TOH on the Growth Inhibition Induced by C9-UK-2A

α-TOH suppresses the growth inhibition of S. cerevisiae caused by cellular ROS generation when the cells are treated with farnesol or p-nonylphenol. We tested the effect of α-TOH on the growth inhibition induced by 50 μg/ml C9-UK-2A in S. cerevisiae IFO 0203 (Fig. 4).
Protective Effect of Blockade in Mitochondrial Electron Transport Chain on C9-UK-2A-induced ROS Generation in Isolated Mitochondria

The majority of cellular ROS are derived from mitochondria. Thus, we confirmed whether C9-UK-2A induced ROS generation in isolated mitochondria of *S. cerevisiae* IFO 0203. C9-UK-2A induced ROS generation at a rate almost proportional at concentrations higher than 25 μg/ml (data not shown).

The protective effect of blockade in the electron transport chain on C9-UK-2A-induced ROS generation in isolated mitochondria of *S. cerevisiae* is shown in Fig. 5. ROS generation was reduced when the yeast cells were pretreated with both rotenone and TTFA. Pretreatment with AA, MYX, or KCN did not reduce the ROS generation induced by C9-UK-2A in the isolated mitochondria. Rotenone specifically inhibits complex I in the electron transport chain, while TTFA is a specific inhibitor of complex II. AA and MYX inhibit the cytochrome reductase of complex III. KCN is a typical inhibitor of complex IV. These results indicate that C9-UK-2A-induced ROS generation is only restricted when electron flow from both complex I and II is limited by rotenone and TTFA.

Discussion

UK-2A and AA strongly restrict the aerobic growth of various filamentous fungi and yeasts by blocking electron transport. Although AA induced cellular ROS generation in porcine renal proximal tubule LLC-PK1 cells thereby expressing cytotoxicity, UK-2A did not. In the yeast *S. cerevisiae*, the tendency of UK-2A and AA to induction of ROS generation seems to be similar to that in mammalian cell lines as described below. C9-UK-2A, which has been prepared to improve the poor duration of the antifungal activity of UK-2A, induces ROS generation and membrane injury promoting the efflux of potassium ions in a strict aerobic yeast *R. mucilaginosa* thereby killing the cells. Although α-TOH completely eliminated the ROS generation, only partial recovery of the growth was...
observed[15]. In *S. cerevisiae* cells, \(\alpha \)-TOH eliminated farnesol- and \(p \)-nonylphenol-induced ROS generation accompanying suppression of growth inhibition[16,17]. Fungicidal Cetyl and nonyl gallates also induced membrane injury and ROS generation in *S. cerevisiae* [18,19]. In this case, \(\alpha \)-TOH did not eliminate the ROS generation or the lethality of these compounds[18,19]. Therefore, \(\alpha \)-TOH could not eliminate the ROS generation induced by fungicidal drugs causing membrane injury.

C9-UK-2A does not inhibit cellular respiration in *R. mucilaginosa* [20]. In *S. cerevisiae*, C9-UK-2A exhibited a growth inhibitory effect (Fig. 1) and strictly restricted respiration. In this study, SD medium was used for the cultivation of the yeast strain. As this medium contains glucose as a carbon source, the inhibition of respiration was not expected to affect the growth of such a facultative anaerobic yeast. \(\alpha \)-TOH completely restored the growth arrest induced by C9-UK-2A in *S. cerevisiae* (Fig. 4). However this antioxidant could not protect against the inhibition of respiration (Table 2). Interestingly, C9-UK-2A induced ROS generation (Fig. 2) and \(\alpha \)-TOH completely eliminated ROS generation (Fig. 3) in *S. cerevisiae*. In addition, the oxidative stress caused by C9-UK-2A against the yeast cells was supported by the decrease in the intracellular GSH/GSSG ratio (Table 1). These results suggest that the growth inhibition caused by C9-UK-2A against *S. cerevisiae* depends on the ROS generation resulting from the inhibition of respiration. On the other hand, the protective effect of \(\alpha \)-TOH against C9-UK-2A-induced growth inhibition could be explained by the elimination of the ROS generated as a result of the inhibition of respiration.

C9-UK-2A induced ROS generation in the isolated mitochondria of *S. cerevisiae*. Complex I and complex III of the electron-transport chain are the major sites of cellular ROS generation[20,21]. The inhibition of cellular respiration by AA and MYX is directly involved in the ROS generation at complex III. AA and MYX are typical inhibitors of ubiquinone reducing site (Qi) and ubiquinol oxidizing site (Qo) inhibitors, respectively, at complex III. In fact, when *S. cerevisiae* IFO 0203 cells were treated with 20 \(\mu M \) AA and 30 \(\mu M \) MYX alone, ROS generation was 424±31 and 627±30 arbitrary units, respectively. The ROS generation induced by C9-UK-2A was restricted only by the addition of both TTFA and rotenone. AA, MYX, or KCN did not affect the ROS generation (Fig. 5). In addition, C9-UK-2A inhibited mitochondrial respiration using \(\beta \)-hydroxybutyrate and succinate as a respiratory substrate, but no inhibition was observed using ascorbate-reduced tetramethyl \(p \)-phenylenediamine as the substrate, indicating that the site of the respiratory inhibition is complex III of mitochondrial electron transport, as is the case for UK-2A (data not shown). Therefore, in the case of C9-UK-2A, the generation site of the ROS was predicted to be complex III.

UK-2A does not induce ROS generation against two yeast strains, *R. mucilaginosa* IFO 0001 and *S. cerevisiae* IFO 0203 (data not shown). However, C9-UK-2A induced ROS generation against these yeasts. This difference between UK-2A and C9-UK-2A may depend on their chemical structures. As previously reported, the nine-membered dilactone rings of UK-2A and AA are not important for binding complex III[22,23]. The replacement of the dilactone ring of UK-2A by a \(n \)-nonyl residue could change its physiological effects. Therefore the dilactone ring of UK-2A possibly attributes the inhibition of cellular respiration without ROS generation. UK-2A, similar to AA, is an inhibitor of the Qi site[24]. However, the spectral change for dithionite-reduced cytochrome b induced by UK-2A binding differed from that induced by AA binding[25]. This difference in binding manner might affect ROS generation at complex III. The replacement of the dilactone ring of UK-2A by a \(n \)-nonyl residue might generate a UK-2A derivative which functions like an AA-type of Qi inhibitor.

Acknowledgements

This research was supported by a Grant-in-aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (14580615), which is gratefully appreciated. Thanks are also due to the Analytical Division at Osaka City University for the measurements of mass spectra.

References

