家児腎・肝機能におよぼす合成 Cephalosporin C 投与の影響

青河 寛次・金尾 昌明・山路 邦彦
国立舞鶴病院 産婦人科
（1968 年 8 月 1 日受付）

合成 Cephalosporin C の腎毒性は、動物の種類による変動が大きく、マウス、ラット、猫、犬などでは障害をみるとめないが、ATKINSON et al. によると、家児においては Cephaloridine の腎毒性が特に強いといわれている。WELLES et al. によると、家児に対するこの腎毒性は、静注において特に著しく、これらの動物において血中濃度が高くなり、腎内濃度が特に高くなるためではないかという。また、掲本は、Cephalothin と Cephaloridine とは、著しい毒性差があることを明らかにしている。

一方、臨床成績では、Cephalosporin C 大量投与においても、腎障害をきたすことはないと、かつて考えられていた。しかし、Cephaloridine 1 日 7 g 以上の投与例で、腎機能の障害を 7 割にとまったという調査もあり、真っ向若、本剤の因果関係は不明であるが、Cephaloridine 投与中に乏血の傾向が増大した 1 例を報告している。

このように、合成 Cephalosporin C の腎毒性については、見解に不詳の点多いので、私は、腎障害の予防される症例や、生体機能の label なる新生児・胎児の化学療法にさいし、腎毒性の発現を防止する目的で、以下の動物実験をおこなった。

I 実 験 方 法

家児の腎・肝機能に及ぼす抗生剤の影響を検討するため、以下の実験方法によった。

1. 実験材料：成熟雌性家児 40 頭を用いた。数代同系統交雑したという家児で、体重体重 2.04～2.62 kg のものを、群 5 頭づつ、一定期間飼育後に実験に供した。

2. 副剤：合成 Cephalosporin C のうち、Cephalothin (CET)・Cephaloridine (CER) を I 回 50～600 mg/kg 静脈内投与した。

3. 実験群は、下記の 8 群に分けた。

4. 体重、尿蛋白、血清尿素素、血中クレアチニン、血清トランスアミラーゼ、アルカリ性フォスファターゼ、血清総コレステロールの 7 項目について検査した。

5. 体重測定は、空腹一定時に、投与前・投与後 7 日に観察した。

尿蛋白は、投与前 3、2、1 日、投与後 1、2、3、4、7 日の 8 回、スルファンリチル酸にて定性試験をおこない、その陽性反応につき ESCHACH 法による定量試験を実施した。

尿素窒素 (BUN) は、ジアセチルモノオキシム法により、Creatinin は FOLIN-WU の変法によって、投与前と投与後 4、7 日に実施した。

血清トランスアミラーゼは、S-GPT を SIGMA-FRANKEL 法によって、アルカリンホフォファターゼは KIND-KING 法によって、総コレステロールは ZAK 变法によって、投与前と投与後 4、7 日にそれぞれ実施した。

II 実 験 成 績

（1）体重の推移

投与前後の体重の変化は、50 mg/kg×1 投与群では、CET 2.30～2.28 kg, CER 2.36～2.38 kg, 100 mg/kg×1 投与群では、CET 2.52～2.62 kg, CER 2.38～2.32 kg, 200 mg/kg×1 投与群では、CET 2.04～2.46 kg, 220～2.14 kg, 600 mg/kg×1 投与群では、CET 2.24～2.44 kg, CER 2.40～2.22 kg であった。

したがって、CET, CER ともに、各投与量のいずれも、投与前後における体重の推移をほとんどみとめないことがわかる。しかし、50 mg/kg×1 投与群で CET, CER の各 1 割、100 mg/kg×1 投与群で CER の 1 割に、それぞれ食欲不振をみとめた。また、200 mg/kg×1 投与群で CET, CER の各 1 割が元気を失い、600 mg/kg×1 投与群では CET の 1 割、CER の 2 割に、それぞれ食慾減退をみとめ、後者の 1 割に元気があったのをみとめている。

（2）尿蛋白の推移

投与前 3 日間および投与後 1、2、3、4、7 日に、尿蛋白を検査した。投与前には、すべての家児における尿蛋白は陰性であった。

CET 50～600 mg/kg×1 投与時には、いずれの実験群も尿蛋白は陰性であり、これに反して、CER 50 mg/kg および 100 mg/kg 投与時にも少なからず 3 割、CET 200 mg/kg および 600 mg/kg 投与時には 5 割のうち 4 割に、尿蛋白

KANJI SEIGA, MASAAKI KANEO & KUNIHIKO YAMAZI: Study on renal and hepatic functions of rabbits following the administration of cephaloridine derivatives.
を、いずれかの時機に検出した。

いま、尿蛋白定量性試験で陰性または陽性と推定されるものを両に定量化し、定量可能例との平均値を求めた。これによると、CER 50 mg/kg×1 投与群では 0.80〜0.42%, 100 mg/kg×1 群では 0.76〜0.36% であるが、200 mg/kg×1 投与群では、投与後第 1 日 1.66% に増加しており、その後も 1.10〜0.40% の範囲内に蛋白を検出してい。CER 600 mg/kg×1 投与群では、投与 1 日 3.04% で、その後 2.92〜1.34% に尿蛋白をみとめた。

したがって、CER 負荷による尿蛋白量の出現は、50 mg/kg と 100 mg/kg 両群内に差がなく、200 mg/kg 以上になると CER 増量の影響を呈するものと解せられる。
（3）BUNの推移

CETを投与した各群のBUNは、10～20 mg/dlで、投与前後における測定値は生理的動揺の範囲内であると考えられる。これに反して、CER投与時には、50 mg/kg×1群で1例が投与後4日に一過性の軽度上昇を示し、100 mg/kg×1群でも1例が投与第4日、第7日に軽度上昇を呈したが、他はいずれも全く正常値であった。一方、CER 200 mg/kg×1投与群では、投与後第4日以降に3例がBUNの軽度上昇をきたし、投与後第7日には、このうち1例がひきつづいて上昇し、20→29→43 mg/dlであり、他の2例は下降傾向を示した。

CER 600 mg/kg×1投与群では、全例にBUNの上昇をみとめ、投与後第4日には32～79 mg/dl、第7日には31～75 mg/dlであり、ひきつづいて高値をみとめた。

上述の成績を平均値で観察すると、CET負荷群では最高3.0 mg/dl以下の動揺であるから、投与前後においてBUNの推移を全くみるとないと思われる。一方、CER負荷群では、50 mg/kg×1群はCET投与時と同様に変動をみとめない。しかし100 mg/kg×1投与群では、投与前の17.8 mg/dlから投与4日後19.4 mg/dl、7日後24.2 mg/dlとなり、200 mg/kg×1投与群では、13.4→25.2→26.2 mg/dlであり、CER 600 mg/kg×1群では、14.0→50.0→51.0 mg/dlに達した。

（4）Creatinineの推移

CET 50～600 mg/kg×1投与群およびCER 50 mg/kg×1投与群では、Creatinineは投与前後においてほとんど動きを示していない。しかし、CER 200 mg/kg×1群では、投与後第4日に2尾が軽度上昇を示し、このうち1例は第7日にもひきつづいて高値を維持した。CER 600 mg/kg×1群では、3尾が投与後第4日に上昇し、このうち1尾は、1.0→8.6→7.5 mg/dlであった。

次に、Creatinineの平均測定値の推移をみると、CET投与群では、ほとんど投与前後の動きがなく、CET 600 mg/kg×1群でも、1.08→1.40→1.60 mg/dlであり、この傾向は、CER 50 mg/kg×1群および100 mg/kg×1群でも同様の傾向である。しかし、CET投与量の増加にともなって、薬剤の影響がみられ、CER 200 mg/kg×1群では1.38→2.50→2.02 mg/dlとやや上昇を示し、600 mg/kg×1群では、1.32→3.68→3.08 mg/dlであった。
これらBUN, Creatinineの測定値は、CER大量負荷時における尿蛋白の出現が腎機能に相当持続した影響を示す事実と推定されるものである。

（5）S-GPTの推移

CET投与前後におけるS-GPTの推移は、50mg/kg×1投与群で投与前15.2u→投与後4日15.6u→投与後7日13.8uの平均値であり、100mg/kg×1投与群で、19.2→12.8→14.6uであった。また、CET負荷量を増してもS-GPT値に変化はなく、200mg/kg×1群で16.6→10.8→14.6u, 600mg/kg×1群で11.2→15.4→17.8uであった。

一方、CER負荷時における推移は、50mg/kg×1群で15.8→12.4→14.6u,100mg/kg×1群で10.4→11.8→12.0u, CER 200mg/kg×1群で11.2→12.0→13.6u,600mg/kg×1群でも17.8→15.8→15.8uであった。

（6）Alkaline phosphataseの推移

CETおよびCER投与前後におけるAlkaline phosphataseの推移は図10のとおり、CER 100mg/kg×1投与4日に21uを示した例を最高として、全く生理的限界の測定値にとどまった。CET 50mg/kg×1投与群では、投与前10.8u→投与後4日11.4u→後7日11.0uであり、100mg/kg×1群では9.6→9.8→10.4u, 200mg/kg×1群では9.6→10.8→10.0u, 600mg/kg×1群では9.6→12.8→12.0uの平均値であった。

一方、CER 50mg/kg×1投与群では、投与前13.4u→投与後4日11.6→後7日14.0u,100mg/kg×1群では12.0→13.8→13.8u, 200mg/kg×1群では11.6→12.6→12.4u, 600mg/kg×1群では11.2→11.8→13.4uの平均値であった。

（7）総コレステロールの推移

CETおよびCER投与前後におけるT-Cholesterolの測定値も、S-GPT, Alkaline phosphataseと同様に、全く推移を示さなかった。

CET 50mg/kg×1投与時には、投与前97.0mg/dl→投与4日後94.0mg/dl→7日後108.0mg/dlであり、100mg/kg×1投与時には、98.0→101.6→103.4mg/dl, 200mg/kg×1投与時には、102.0→96.4→100.6mg/dlであり、600mg/kg×1投与時にも109.0→102.6→110.4mg/dlであった。

CER負荷群もCETと同様であり、CER 50mg/kg×1投与時には、投与前109.8mg/dl→投与4日後105.4mg/dl→7日後108.8mg/dl, 100mg/kg×1投与時には、110.6→107.8→113.4mg/dl, CER 200mg/kg×1投与時には、
103.0 → 106.6 → 114.2 mg/dl, 600 mg/kg×1 投与時には 115.0 → 104.4→113.4 mg/dl の平均値を示した。

III す び

ATKINSON et al. によると、CER の腎毒性は、動物の種類による変動が大きく、たとえば ND₅₀ (Nephrotoxic dose) で示すと、マウス 3.1 g/kg、マウス♀0.60 g/kg、ラット♂1.0 g/kg、ラット♀1.4 g/kg、猫♂♀>1.0 g/kg、犬♂♀>1.0 g/kg である。対して、家兎♂0.14 g/kg, ♀0.09 g/kg である。また、モルモット♀0.4 g/kg、♀0.7 g/kg、猿♂♀0.3 g/kg の ND₅₀ である。この腎毒性は動物による各系統差がかなり著るしく、筆者らは、家兎において、腎障害発生傾向の推移を経験している。

図 10 Alkaline phosphatase

栃本らは、CER 200 mg/kg 投与群の家兎では、尿蛋白および尿糖出現を 100 % にとめる。これに反して、CET 同様では全く異常がなかったと報告している。

筆者らは、この CET と CER の腎毒性の差をさらに明確にする目的で、先に家兎に筋注射法による腎機能への影響を追求したが、個体差が大きく、一定の結
図 12 T-Cholesterol

図 13 T-Cholesterol（平均値）の推移

論に達しなかった。

そこで、今回は、同系の薬品という実験を反復し、上述の成績をえた。すなわち、CET 投与群では、尿蛋白は全例陰性であったのに比し、CER 50 mg/kg 投与群では、尿蛋白が高値を示した。BUN 上昇は CER 600 mg/kg 投与時に、Creatinine 上昇は 200 mg/kg 以上投与時に明らかにみとめられた。しかし、S-GPT, Alkaline phosphatase, T-Cholesterol は、CET および CER 投与のいずれの投与群とも、なんらの変動を来さなかったのである。

検体により、CET 投与群において、腎は肉眼的にも灰白色を呈し、著明な変化をみる。顕微鏡下で尿細管中に多数の硝子様円柱をみとめた。そして、尿細管中に硝子様円柱が多数存在した例は、いずれも尿蛋白、尿糖陽性例であり、所見と腎の病理所見とはほぼ完全に一致するという。ATKINSON et al. によると、CER の腎障害は近位尿細管のみで、遠位尿細管、栄養体などは障害を受けないというが、上述した CET と CER との腎毒性発生の差異も、おそらくこの腎障害様式に起因する可能性が推定される。

本論文の要旨は、第 14 回日本化学療法学会東日本支部総会（昭和 42 年 10 月、札幌市）でその一部を発表し、その後、第 14 回日本化学療法学会中日本支部総会（昭和 42 年 11 月、大阪市）で報告した。

参考文献


