STUDIES ON PROTEIN BINDING OF CEFAZOLIN AND OTHER ANTIBIOTICS

TATSUNORI SHIMIZU

Department of 3rd Internal Medicine, Sapporo Medical College
Nishi-16 Chome, Minami 1-jo, Chu0-Ku, Sapporo, Japan
(Chief: Prof. SEIGO TATENO)

(Received March 20, 1974)

The ability of antibiotics to bind to serum proteins was studied. The extent of binding of cefazolin depends on the species of animals used: about 90% with the sera from man, rabbits or rats, and less in degree with the sera from horses, calves or dogs.

In cefazolin, the binding was characterized by its considerably high extent and easy reversibility. Antibiotics which can bind with proteins to a great extent are generally said to cause high total concentrations in the serum when given parenterally, and this applies to cefazolin. In the superposition method and disc method, the presence of serum interfered with the diffusion of cefazolin into agar medium.

The laboratory evaluation of cefazolin was reported in previous papers1-4), and the protein-binding property of this new antibiotic was indicated therein. The present paper reports the results from further investigations verifying the extent of binding to serum proteins, a feature which is somewhat different from that of other antibiotics.

Materials

Human serum (Moni-Torol 1) was obtained from Green Cross Company and other sera were prepared from each animal.

In addition to the cefazolin (Fujisawa Laboratories), the following antibiotics were used for comparison: Ampicillin and cloxazolin from Beecham Laboratories; dicloxacinillin from Bristol Laboratories; cephalexin and cephalothin from Eli Lilly; cephaloridine from Glaxo Laboratories.

Methods

1. Determination of protein binding

The centrifugal ultrafiltration technique5) was used to determine the extent of binding. Solutions of the antibiotics were prepared so as to give various concentrations with 1/15 M SÖRENSEN phosphate buffer. A 0.5-ml aliquot of the antibiotic solution was added to 4.5 ml of serum. The mixture obtained was incubated at 37°C for 1 hour. A reference experiment was performed by use of the buffer in place of serum. Bags for centrifugal ultrafiltration were prepared from Visking cellulose tubing (Visking Company, 8/32 in size). Each of the bags containing 2 ml of the mixture (consisting of an antibiotic solution and serum) or reference mixture (consisting of an antibiotic solution and the buffer solution) was hung in a 15-ml polypropylene tube.

Tubes containing the bag were centrifuged at 1,000×G for about 40 minutes. The antibiotic content of the resultant ultrafiltrate was determined by microbiological assay (paper disc method) using Bacillus subtilis ATCC 6633 as a test organism5).

The extent of binding of an antibiotic to serum was calculated by the equation provided below:

Per cent bound = \(\frac{R - S}{R} \times 100 \)

where S is the antibiotic content in the ultrafiltrate of samples and R is the antibiotic content in the ultrafiltrate of the reference.

2. Superposition method
The author conducted this experiment as mentioned in Torii and Kawakami's paper.

Result

1. Extent of Binding to Serum Proteins from Different Species of Animals

As shown in Table 1, the protein binding extent of antibiotics was studied in 6 species of animals including two additional species of horses and calves. The extent of binding was determined by the previously described method. The amounts of cefazolin bound to the serum protein of humans, rabbits and rats were each around 90% of the initial amount and were comparable to those in dicloxacillin, cloxacillin or cephalothin. On the other hand, the amounts bound to the serum protein of horses (54%), calves (43%), and dogs (54%) were significantly less than in any of the animals listed above.

From these results, the test antibiotics fall into three major classes according to the extent of binding to the human serum: high, moderate or low. In this classification, cefazolin belongs to a group of high extent antibiotics which involves cephalothin, cloxacillin, and dicloxacillin.

Table 1. Extent of binding to serum proteins from different species of animals

<table>
<thead>
<tr>
<th>Antibiotic*</th>
<th>Serum binding (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horse</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>54</td>
</tr>
<tr>
<td>Cephalothin</td>
<td>42</td>
</tr>
<tr>
<td>Cephaloridine</td>
<td>17</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>5</td>
</tr>
<tr>
<td>Dicloxacillin</td>
<td>79</td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>70</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>5</td>
</tr>
</tbody>
</table>

* Final concentration: 30 mcg/ml

2. Effect of Concentrations of Antibiotics and Albumin on Protein Binding

(1) Concentration of antibiotics

As has been mentioned, cefazolin highly binds to the serum protein. The author studied the relationship between the firmness of the protein binding and the concentration of the test antibiotics. The test solutions were so prepared as to contain 4% of human albumin and varying concentrations of cefazolin. These solutions were incubated at 37°C for 1 hour to determine the extent of the protein binding by centrifugal ultrafiltration.

Regarding the relationship between the extent of protein binding and cefazolin concentrations,
as much as 90% of the cefazolin was bound to the serum at concentrations of 50 mcg/ml or less, but, at concentration exceeding 50 mcg/ml, the extent decreased with the increase in concentration (Fig. 1). At concentrations up to 50 mcg/ml, which may represent antibiotic concentrations attained in typical clinical use, the amount of cefazolin bound to the serum protein surpassed that of other antibiotics tested. These studies led us to the presumption that the binding site of the human albumin is occupied by cefazolin as the concentration increases.

(2) Albumin concentrations
The relationship between the extent of protein binding and albumin concentration is shown in Fig. 2. The test solutions were so prepared as to contain varying concentrations of human albumin and 30 mcg/ml of cephalothin or cephalexin. These test solutions were treated as mentioned in (1).

In cephalexin, the binding to the serum protein is known to be limited, the amount of bound form was slightly dependent upon the rate of albumin concentration. In cefazolin, the amount of protein-bound form increased greatly with the elevation of the albumin concentration.

3. Effect of Serum on the In Vitro Activity of Antibiotics
In order to clarify the effect of serum on the in vitro antibacterial activity of cefazolin, MICs of test antibiotics were determined in tripticase

Table 2. Effect of serum on the in vitro activity of antibiotics
Test organism; Staph. aureus FDA 209 P
Inoculum size; 10⁴/ml
Medium; Tripticase soy broth

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MIC (mcg/ml)</th>
<th>Control</th>
<th>+4% Albumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefazolin</td>
<td>0.39</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Cephalexin</td>
<td>3.13</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>Cephaloridine</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Cephalothin</td>
<td>0.2</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Dicloxacillin</td>
<td>0.78</td>
<td>3.13</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Effect of buffer-dilution on antibiotic-protein binding

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Dilution and % activity recovered*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>48</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>55</td>
</tr>
<tr>
<td>Cephaloridine</td>
<td>82</td>
</tr>
<tr>
<td>Dicloxacillin</td>
<td>22</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>30</td>
</tr>
</tbody>
</table>

* 0.1 M phosphate buffer

Fig. 3. Effect of serum on diffusion of cefazolin
(1) Superposition method. Incubated after preservation at 5°C for 0, 3 and 18 hours
soy broth with or without 4% human serum albumin. *Staphylococcus aureus* FDA 209 P was used as the test organism at 10^4 cells per ml of broth. MICs were estimated after incubation at 37°C for 20 hours.

As shown in Table 2, the MIC of cefazolin in the broth was 0.39 mcg/ml, but increased to 1.56 mcg/ml by the addition of 4% albumin. On the other hand, the MIC values of cephalaxin and cephaloridine were unchanged in the presence of albumin. In spite of the decreased activity, cefazolin is supposed to retain sufficient antibacterial activity against most of the sensitive bacteria.

The MIC of cephalothin was also increased in the presence of 4% albumin similar to the case of cefazolin.

4. Effect of Buffer-Dilution on Antibiotic-Protein Binding

The firmness of antibiotic-protein binding was determined by the following method: Solution of cefazolin or other test antibiotics (200 mcg/ml), was mixed with 9-fold volumes of human serum (Moni-Trol 1). The mixtures were then diluted to 2-, 4-, and 8-fold volumes with 1/15 M phosphate buffer (pH 7.0) to determine the recovery of the antibiotic activity that had been reduced by the serum.

Table 3 shows antibiotic activities in per cent recovered by the dilution. In spite of the markedly decreased activity on adding the serum, cefazolin at the 8-fold dilution, showed sufficient recovery (96%) of its initial antibiotic activity to equal that of cephaloridine. On the other hand, dicloxacillin and oxacillin showed a more markedly decreased activity and an inferior recovery to that of cefazolin or cephaloridine. This fact indicates the reversibility of cefazolin-serum binding.

5. Effect of Serum on Diffusion of Cefazolin

(1) Superposition method

According to superposition method (one-dimentional diffusion method), the length of the
inhibitory zones produced by the standard solutions of cefazolin in phosphate buffer or rabbit serum was compared to study the effect of the serum on the diffusion of antibiotics into the agar medium. Two kinds of standard cefazolin solutions, one in phosphate buffer and the other in the rabbit serum, were superposed respectively upon the agar medium in an assay tube. Each of the agar media was previously inoculated with Streptococcus hemolyticus Strain A-S-8. The inoculated media were preserved at 5°C for 3 or 18 hours, and then incubated at 37°C for 20 hours. The length of the inhibitory zones produced was compared to know the effect of the serum on the diffusion of cefazolin. Inhibitory zones from 18-hour preservation were much larger than those from 3-hour preservation (Fig. 3). This tendency was applicable to the standard solutions from both serum and buffer.

These results indicate that cefazolin in itself is extremely diffusible into the agar medium and that the serum-bound form causes inversely delayed diffusion.

(2) Paper disc method

For a similar purpose, the effect of serum on the diffusion was estimated by the paper disc method. Test solutions were prepared similarly in the buffer and rabbit serum except to contain 50 mcg per ml. Paper discs, 8 mm in diameter and soaked with 25 µl of the cefazolin solution, either in the buffer or serum, were placed on the surface of the agar plate which had been inoculated with Bacillus subtilis ATCC 6633. These discs were removed after contact with the plate for varying intervals, and incubated at 37°C for 20 hours. The diameters of the resulting inhibitory zones were measured. The cefazolin content in the discs was estimated by plotting the diameters against the standard cefazolin curve obtained from the agar plate on which the disc remained intact through the incubation period of 20 hours (Fig. 4).

In discs soaked with the buffer, the antibiotic content and the lapse of time was as follows: The majority of cefazolin, exceeding 90% of the initial amount, was recovered in discs in contact with the agar plate for 90 minutes or more. In cephalexin, however, only 80% of the initial amounts was recovered after an interval as long as 180 minutes. In discs soaked with the serum, the effect of serum on diffusion of cefazolin was so marked as to cause a 60% reduction after contact for 180 minutes. The serum, however, gave little effect on the diffusion of cephalexin.

As has been mentioned, the extent of binding to the serum protein depends on the test species. In this connection, the standard curves of cefazolin in the sera of different animal species were compared with the standard curve in buffer solution. As shown in Fig. 5, the curves in the serum of calves or horses are much closer to the standard than in the serum of man or rabbits. This indicates that the binding to the serum of calves or horses is lower and more reversible than to that in the serum of man or rabbits. The sera of man or rabbits caused a curve discrepant from that of the buffer, horses, or calves. Consequently, the high binding led to a presumable prevention of the bound cefazolin from dissociation and diffusion into the agar medium.

Acknowledgement

The author wishes to thank Prof. S. Tateno for his encouragement. The author is indebted to Dr. M. Nishida and Dr. T. Murakawa for their helpful suggestion.
抗生物質に関する国内文献 (4)

內 科

北本 満 (早稲田大): Doxycycline の特性と呼吸器 感染症における使い方。Medical Digest 22(12): 38 ~42, Dec. 1973 (Te)

中川圭一 (東京慈恵会病院): 重症肺炎の 1 治験例。Medical Digest 22(12): 44 ~45, Dec. 1973 (P Cet Cez S K)

内 科
西本幸雄 (病院大内科): 生物製品治療の留意点ー呼吸器感染症治療の立場からの。Medical Digest 22(12): 47, Dec. 1973 (P S)

長野 満 (国立療養南病院): 肺化膿症の症例。Medical Digest 22(12): 48, Dec. 1973 (P K G C Tc)

前川祥一, 中西通泰, 川合 淑, 他 (京大胸部研 1 内), 浜田安昭 (京大薬学): 導入菌の発育に不適当な 条件と化学療法 (会報)。結核 48(12): 339, Dec. 1973 (Rf)

三輪太郎 (国立東京大学): 全血の結核菌発育阻止力 (3 報) RFP 症例を中心に (会報)。結核 48(12): 540, Dec. 1973

今野 淳, 大泉耕太郎, 林 泉, 高橋園子, 佐々 木昌子, 田 航, 山田俊一郎 (仙台 医) 内, 尾形和夫 (仙高公病院), 佐藤 守 (宮城県野病院), 深谷正 (仙台社会保険病院), 中村良雄 (岩手 県中央病院), 木村 武 (岩手市民), 志村建一 (青森県立中央病院), 荒川 守 (秋田県立総合病院), 藤原良 三 (秋田県mai病院), 木村 守 (藤田総合病院), 島 信男 (青森県立病院), 輔助機関検討会に対する Rifampicin の 週 2 回と, EB, INH の RFP 併用療法 の効果 (会報)。結核 48(12): 541, Dec. 1973 (Rf)

五味二郎 (信州): Rifampicin に関する研究第 1 次共同研究における RFP 治療患者の 3 年後の適隔 成績 (会報)。結核 48(12): 541 ~542, Dec. 1973

山本正彦 (名大内科): 内科領域の照射治療 (12 病例)。永田 赤 (福爾摩病)。矢崎正勇 (鹿児島大学病院): 極希少例 (1 病例)。三輪 太郎 (奈良大学病院), 森 厚 (奈良県立病院), 木村 百合夫 (奈良県立病院), 黒木大三 (奈良県立病院), 水谷 伸 (大阪市立病院), 本川 泰 (奈良県立病院), 岩倉 直 (奈良県立病院), 野村真美 (東京医科大学), 竹内浩一 (名古屋病院), 藤間一郎 (結核予防会第一会)。再治療肺結核に対する RFP 1 日 450 mg 週 3 回投与と Rifampicin 1 日 600 mg 週 3 回投与の効果の比較。結核 48(12): 542 ~543, Dec. 1973

呼吸器感染症 最近の動向。Medical Pharmacy 8(2): 68 ~73, Feb. 1974 (C Tc Mcl Lnc)

中山志郎, 服部 透 (国立京都病院), 星野 孝 (京大内科): 著明な動脈球細胞減少症と骨髄線維化を伴った ヘジキン症の 1 例。日本血液学会雑誌 36(6): 938, Dec. 1973 (Bleo)

福田善之助, 深澤道夫 (東大老年病学): 老人の病と取り扱い方。感染症。総合臨床 23(3): 484 ~489, Mar. 1974 (P Ceph S K G C Tc Mcl)

北 鎮平 (東京中央病院): Rifampicin による肺結核 治療の臨床的検討ーRFP 週 2 回と EB, INH 週 4 回を平行に肺結核の初期治療効果についてー。新薬と 臨床 23(3): 475 ~480, Mar. 1974