Intensely Positively Charged Perineuronal Nets in the Adult Rat Brain as Detected by Staining with Anionic Iron Colloid

Takuro Murakami¹, Aiji Ohtsuka¹, Hiroaki Matsuoka¹, Takehito Taguchi¹, Tetsuro Murakami², Koji Abe² and Yoshifumi Ninomiya³

Departments of Anatomy¹, Neurology³ and Molecular Biology and Biochemistry³, Faculty of Medicine, and Department of Radiological Technology³, Faculty of Health Sciences, Okayama University Medical School, Okayama, Japan

Received October 11, 2000

Summary. Ferric chloride, when boiled with ammonium thiocyanate, ammonia and cacodylic acid, is converted into a fine anionic iron colloid which consists of 1.0-1.5 nm electron dense granules and gives a distinct Prussian blue reaction (Ohtsuka and Murakami, 1986). Light microscopy of tissue sections stained with this fine anionic iron colloid at pH values of 6.0, 7.0 and 8.0 showed that the healthy adult rat brain contains a considerable number of neurons which possess an intensely positively charged perineuronal net. This net was most clearly demonstrable by staining with the anionic iron colloid at a pH value of 8.0, at which ionizations of almost all cationic sites of the tissue elements were obliterated. Transmission electron microscopy of ultrathin sections stained at a pH value of 8.0 showed that the anionic iron colloid was preferentially deposited in the perineuronal tissue spaces. These findings indicate that the intensely positively charged perineuronal net contains some strongly basic substances such as guanidino compounds, and occupies the perineuronal (perisynaptic) tissue space.

MATERIALS AND METHODS

Light microscopy
Paraffin-embedded brain blocks containing the retrosplenial cortex were prepared from healthy adult male Wistar rats which were vascularly perfused with 4% paraformaldehyde (Murakami et al., 1993). The blocks were cut into 10-15 μm thick sections and deparaffinized with xylene.

The deparaffinized sections were immersed in our fine anionic iron colloid (a diluted mixture of boiled ammonium thiocyanate-ferric chloride-ammonia-cacodylic acid) at pH values of 6.0, 7.0 or 8.0 (Ohtsuka and Murakami, 1986), and treated for Prussian blue reaction. After this treatment, the sections were counter stained with nuclear fast red (Ohtsuka and Murakami, 1986) and observed with a light microscope (Olympus, BX50).

Electron microscopy
Small blocks were prepared from LR White resin-embedded specimens containing the retrosplenial cortex from other healthy adult male Wistar rats which were vascularly perfused with a mixture of 4% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2) and then immersion-fixed for 6 h (Tsubouchi et al., 1996).

The blocks were cut into ultrathin sections and incubated in our fine anionic iron colloid at pH values of 6.0, 7.0 or 8.0 for 6 h at room temperature (Ohtsuka and Murakami, 1986). They were then stained with osmic acid (Ohtsuka and Murakami, 1986) and observed with a transmission electron microscope (Hitachi, H-7100).
RESULTS

Light microscopy

The sections treated with our fine anionic iron colloid at a pH value of 6.0 showed a homologous and strong Prussian blue reaction (Fig. 1). However, some neurons (their cell bodies and main processes) in the retrosplenial cortex possessed a marked perineuronal net which showed a stronger Prussian blue reaction than the surrounding tissues (Figs. 1, 2).

The sections stained at a pH value of 7.0 gave a reduced Prussian blue reaction (Fig. 3). However, those perineuronal nets showing a stronger Prussian blue reaction at a pH value of 6.0 maintained this reaction even at a pH value of 7.0 (Figs. 3, 4).

At the pH value of 8.0, the Prussian blue reaction of the tissue elements almost disappeared (Fig. 5). However, those perineuronal nets showing a stronger Prussian blue reaction at pH values of 6.0 and 7.0 maintained their intense Prussian blue reaction (Figs. 5, 6). The neuropil regions also exhibited a strong Prussian blue reaction at this pH value of 8.0 (Fig. 6).

Electron microscopy

Our anionic iron colloid consisted of 1.0–1.5 nm granules and yielded distinct dark images under the transmission electron microscope (Fig. 7).

In the sections treated with the anionic iron colloid at pH value of 6.0, the colloidal iron granules were deposited most densely in the perineuronal tissue.
spaces, while they were diffusely deposited in other tissue elements (data, not shown).

In the sections treated with the anionic iron colloid at pH value of 7.0, our colloidal iron granules were again distributed most densely in the perineuronal tissue spaces. Depositions of the iron granules in other tissue elements were markedly less in amount than in the specimens treated at pH value of 6.0.

In the sections treated with our anionic iron colloid at pH value of 8.0, the colloidal iron granules were distributed preferentially in the perineuronal tissue spaces (Fig. 7). Such preferential depositions of the iron granules were also observed in the neuropil tissue spaces (Fig. 7). Other areas showed few depositions of colloidal iron granules.

DISCUSSION

The present study shows that some neurons in the mature rat brain possess an intensely positively charged perineuronal net which was strongly reactive to our fine anionic iron colloid (OHTSUKA and MURAKAMI, 1986). Preferential depositions of our fine anionic iron colloid in the perineuronal and neuropil tissue spaces at a pH value of 8.0 indicate that the intensely positively charged perineuronal net occupies these tissue spaces and embeds the synapses. As far as we know, no previous authors have reported such intensely positively charged perineuronal nets (CELIO et al., 1998; YAMAGUCHI, 2000).

Ferric oxide-potassium ferrocyanide (GASIĆ et al.,
Fig. 5. A retrosplenial section, stained with our fine anionic iron colloid at pH value of 8.0. The intense perineuronal Prussian blue reacton is maintained (large arrowheads). ×500

Fig. 6. A closer view of the retrosplenial section stained with our anionic iron colloid at pH value of 8.0. In addition to the intense perineuronal Prussian blue reaction (large arrowheads), some intense Prussian blue reaction (small arrowheads) is seen in the neuropil regions. ×1,500

1968) and chondroitin sulfate (SENO et al., 1983) colloids have been used for histochemical or cytochemical detection of cationic sites in tissues. In a concomitant experiment in this study, however, it was difficult to clearly demonstrate the intensely positively charged perineuronal nets with those previously used reagents consisting of coarse or large granules (5-20 nm).

In another concomitant experiment of ours, we stained some serial sections from the retrosplenial cortex of an adult rat brain with our fine anionic iron colloid (OHITSUKA and MURAKAMI, 1986), our fine cationic iron colloid (MURAKAMI et al., 1986), FUJITA’s highly concentrated aldehyde fuchsin (FUJITA, 1957), or lectin agglutinin (Vicia villosa or Wisteria floribunda agglutinin) (NARAGAWA et al., 1992; HARTIG et al., 1992). The results of these experiments have shown that the neurons stained with our fine anionic iron colloid are not identical to the neurons stained with our fine cationic iron colloid and aldehyde fuchsin nor to the neurons labeled with lectin Vicia villosa or Wisteria floribunda agglutinin. These findings indicate that the intensely positively charged perineuronal nets are independent from the intensely negatively charged perineuronal nets (i.e., perineuronal nets of proteoglycans) and also from the nerve cell surface glycoproteins (MURAKAMI et al., 1994, 1996, 1997, 1999b).

A noteworthy finding is that our intensely positively charged perineuronal (or perisynaptic) nets can be stained even at such a high pH value of 8.0 in which ionization of almost all cationic sites of the tissue
elements are apparently obliterated. This fact indicates that these nets contain some strongly basic substances such as guanidino compounds. Chromatographically, these compounds with the guanidinium group can be stained by treatment with a mixture of NaOH, urea, and alpha-naphthol alcohol and then with hydrobromide (Saraguchii, 1924). We are now trying to improve this method for staining tissue sections or for confirming our idea that the intensely positively charged perineuronal nets contain the guanidino compounds.

It has been generally believed that the guanidino compounds are neurotoxic and cause some such diseases as epilepsy (Mori, 1987, 1996; Mori et al., 1996). The present study, as demonstrated in Figures 1–7, strongly suggests that the guanidino compounds contribute to the formation of the extracellular matrix or perineuronal (perisynaptic) nets of some neurons in the mature brain of healthy animals. The detailed distribution of these intensely positively charged perineuronal nets will be reported elsewhere.

Acknowledgments. We are grateful to Miss Aya Esaki, Mr. Hiromichi Kusano, Mr. Masahiro Narasaki, Mr. Hisao Mizoguchi and Mr. Hiroyuki Oosugi for their help in tissue preparation and staining. We are also grateful to Prof. Emer. Akitane Mori and Assoc. Prof. Isao Yokoi (Neuroscience Department of Okayama University Medical School) for their advice and comments.

REFERENCES

