指定討論 相貌認知の特殊性と生得性

永井 知代子

要旨：相貌認知の特殊性について。相貌失認と Williams 症候群研究の立場から言及。まず相貌失認に関しては、モーフィングによる合成顔画像を用いた新しい相貌認知検査の結果から、相貌失認では相貌弁別機能が著しく低いか、一方でより類似した顔を似ていると判断する傾向は健常者同様であることを示した。これはカテゴリー知覚を反映しており、相貌失認の障害レベルが専門性で規定される可能性を示唆。近年の fMRI 研究ではこの可能性を支持する所見も得られており、従来の相貌認知特殊説に疑問を投げかけている。また、Williams 症候群は障害が顕著な視空間認知に比べて相貌認知が良好であることから顔モジュール説を支持する疾患とされてきたが、全体情報ではなく部分情報から認知しているとの報告もあり、認知の方法自体が正常とは異なる可能性が指摘されている。このように、相貌認知は特殊であると断言するにはまだ克服すべき問題が残されている。

Key Words：相貌認知、相貌失認、モーフィング、Williams 症候群

face recognition, prosopagnosia, morphing, Williams syndrome

はじめて

相貌認知は他の視覚対象の認知とは異なる、という説が近年広く受け入れられてきた。種々の異なる分野で、相貌認知の特殊性を示唆する現象が知られてきたためである。特殊という意味には2つあり、1つは脳には顔に対して独自の認識機構がある（specificity）ということであり、もう1つは顔は他の視覚対象とは異なるユニークな特性を持つということ（uniqueness）である（Hay & Young 1982）。specificity としては、サルの側頭葉に存在し顔刺激に反応する顔ニューロンの存在（Perret ら 1986）や、新生児が顔刺激に特別な反応を示す現象（Goren ら 1975）などが挙げられる。以下で取り上げる相貌失認もこの1つである。また近年トピックスになりつつある Williams 症候群もこの1つで、精神発育遅滞が有視空間認知障害が著しいにもかかわらず相貌認知は正常であることから、顔モジュール説を支持する例とされている（Bellugi ら 2000）。一方 uniqueness としては、心理学分野で知られる倒立効果がある（Yin 1969）。これは、顔の特徴認知や記憶が顔刺激を倒立させることによって著しく低下する現象で、相貌認知には部分より全体情報が優先であることの表れとされてきた。一般に顔以外の刺激ではみられない現象である。他に、顔のような模様を持つ蝶の認知が一様な模様の蝶より良いなど、顔以外の視覚パターンを顔として見ると相貌的知覚（遠藤 1993）も uniqueness の1つである。

1. 相貌失認

相貌失認とは脳損傷により相貌が特異的に認知できなくなる症状をいう。この症状に関する従来の発症機序説は、以下の4つに大きく分けられる。①視覚失認が改善して、相貌認知障害のみ残った状態であるとする説、②健忘症候群の顔に限定したタイプであるとする説、③あるクラス内で個々を同定する能力の障害であるとする説、④顔に対して特別な知覚処理を行うシステムの障害であるとする説、である（Bauer 1993）。このうち①は、古典的に知られる顔と同時に牛や鳥の区別もつかなくなった症例を説明できず、②は全体把握であるある種の視覚基盤障害を伴う相貌失認を説明できない。③④はこれらの現象を説明でき有力な説ではないが、これらもそのシステムの拡大クラスや視覚対象が特定できているわけではない（Farah 1990）。このような不明瞭な点を明らかにするため、相貌失認という症状をより理解できるのみならず、相貌認知機構そのものの研究にも貢献すると思われるが、現在のところ上記の点を考慮した相貌認知検査はないとされる。そこでわれわれは、モーフィングにより合成した顔刺激を用いて、以下に述べるような相貌認知検査を作成し相貌失認患者と正常被験者とを比較した。詳しくは永井ら（2000）を参照された。

1. 新しい相貌認知検査の作成：モーフィング

2枚の顔写真をコンピュータに取り込み、おのおののワイヤーフレームの三次元座標の重み付けを変えて20段階の中間顔を作成した（モーフィング）。もとになる顔写真は年齢性別ごとに未知から他の未知/既知から既知/既知から既知、4種類の変化ができるよう要素を作り、モーフィングを行った。課題は図1の手順による。課題1は異同判断課題で、標準刺激である元の写真1枚を10秒間呈示して消えた後、比較刺激である中間顔を合成番号順に1枚ずつ次々に呈示する。標準刺激と同じ人物であるかを問い合わせ、初めて「異なる人物」であると感じたときの中間顔の番号を点数とした。つまり点数が小さ
課題1 異同判別課題

図1 検査手順

図2 課題1：正常群および相貌失認患者の既知性効果

U1・2：未知相貌から他の未知相貌、U2・F1：未知相貌から既知相貌、F1・2：既知相貌から他の既知相貌、F2・U1：既知相貌から未知相貌に変化。左の4つのグラフは正常群の結果（SOM：壮年男性群、SOF：壯年女性群、SYM：若年男性群、SYF：若年女性群）。右のグラフは相貌失認患者KHとTYの結果を正常群平均と対比したもの。
（1）正常群
\[\mu = 5.263, \sigma = 1.467 \]

（2）相貌失認群
\[\mu = 5.574, \sigma = 4.901 \]

図3 課題2：確率関数曲線

\(\mu \) は分類が0か1どちらになされたかの境界を示し、\(\sigma \) は判断の精度を示す。縦軸は標準刺激1に分類した確率、横軸は分類した合成番号。図中の○は各合成番号の比較刺激を1に分類した確率を示す。判断が正確であれば、判断確率は\(\mu \)付近で0から1へ急に変化し、急峻なカープを描く。

目・鼻・口に相当するような特徴を突きとして持つ集団（図4）で、これらの向きや大きさが微妙に異なることを特性とする視覚対象である。これを何度も見てその名前や性別に相当するもの、族に相当するものを十分訓練して専門家になった被験者では、いわゆる相貌認知領域とされている右脳の右半球中部が活性化したというものである。またgreebleの専門家になった段階では倒立効果がみられること（Gauthierら 1997）、greeble以外に鳥や車の専門家がそれぞれの専門分野のものを見ているときのfMRIでも同様部位が活性化すること（Gauthierら 2000）もすでに確かめており、彼女らは専門化することは顔領域が特殊化することを導く1つのファクターではないかと述べている。

II. Williams症候群（WS）

Williams症候群（以下WS）は、第7染色体11.23領域の半接合体欠失により心血管異常・顔貌異常・知能低下をきたす疾患であるが、高次機能の解離がみられるとして近年注目されている。平均IQは50程度と低いにもかかわらず言語発出が良好であり、視空間認知が著しく不良でありながら相貌認知は良好という奇妙な解離が報告されている（Bellugiら 2000）。そして、この症候群の存在が顔モジュールの存在を主張する1つの証拠とされてきたのである。

しかし従来とは異なるアプローチをとることによって、良好とされている相貌認知も正常とは異なることを示す研究が少数ながら報告されてきている。キーワードは「全体と部分」である。WS
では、模写などに際して部分は正しく描画できるが全体の構成ができないことが指摘されてきた（Bellugi ら 2000）。一方、前述のように相貌認識には部分より全体情報がより重要であることが知られている。この矛盾に注目してKarmiloff-Smith（1997）は、相貌認識課題に全体処理を促すものと部分処理を促すものを考え比較した。その結果 WS では全体処理課題の成績が悪く、正常とは違う全体情報に頼らずに部分情報によって相貌処理を行っているのだと主張した。Derrue ら（1999）はさらに、WS 患者は同じ年代の健常児よりも成績が悪く、年少児と共通の相貌認識傾向を有するが、単に発達が遅れているだけでなく年齢と相関しないこと、また顔型・幾何学模様に並べた図形の処理課題では、健常児と違い両課題とも全体処理へのバイアスがみられないことを示した。いずれも従来の顔モジュール説を否定するもので、WS で相貌認識が良好の場合は、全体情報を使わずに部分情報の処理による認知を行うよう脳が発達分化したことが原因だと主張している。

この全体と部分の問題は相貌認識のみならず WS の認知全体において重要であり、単に全体認識が悪いと言えるのか自体もまだ検討の余地がある（永井ら 2001a）。われわれの検討では、IQ が同じ群と比較すると確かに WS は相貌認識良好だが、特に異なる向きの顔写真のマッチングや記憶課題の結果が良好で（永井ら 2001b），これらが部分的情報だけで処理可能なのか否かも検討を要する。

おわりに— FFA 論争—

相貌認知特殊説をより強固にしているものに fMRI 研究がある。特に Kanwisher ら（1997）は顔と顔以外の対象の認知で活性化する部位を比較し、顔を選択的に処理する紡錘状回の一領域を fusiform face area = FFA と呼び顔モジュール説を擁護した。しかし Ishai ら（1999）は同様の結
果を得ながら別の解釈をしている。すなわち、
顔・家・椅子を眺めているときそれぞれ紡錘状回
の外側・内側・下側頭回外側が活性化するが、そ
の活性パターンは分散しており、他のカテゴリー
での最大活性化領域の方向に進展していることに
注目したのである。そして脳側視覚路の機能構造
はカテゴリー特異的モジュールなのではなく、
一次視覚野はretinotopic、感覚野はsomatotopic
になっているのと同じように、この領域では「featur
topic」になっている －すなわち似た視覚
特徴を互いに接近してマップしている－ のと
している。一方 Tarr & Gauthier (2000) は
FFAは顔特異的ではなくカテゴリー化レベルと
専門性のレベルで規定される非常に柔軟な領
域であるとして、むしろ FFA = flexible fusiform
area であると述べている。これに対し Kanwi-
scher (2000) は、greeble を用いた実験において
は顔と類似した特質を持つ刺激の弁別に顔モ
ジュールが使われただけではないか、島や車の専
門家による実験では被験者の専門分野の対象に対
する興味・注意を部分的に反映しているのではないか、
などの反論をしている。

このように「顔は特別である」と言い切るには
まだ議論の余地がある。「顔が特別でない」との
仮定のもとに実験した場合すべてが棄却できるの
か、の検討も必要であろう。専門化することが相
貌特殊性の根幹にあるならば、顔を布で覆い他人
に見せない民族がいるとしたら、彼らは互いの手
を見ることで個人を識別し、手を見ている時に紡
錘状回が活性化するようになるのだろうか？ま
たヒトはなぜヒトの顔の専門家になるのだろうか。
顔の専門家に発達するよう遺伝的にプログラムさ
れていることが、あるいは顔に関する特殊性のな
かもしれない。これは相貌認知の生得性的問題に
通じ、今後の研究が期待される。

文 献

2) Beale, J.M., Keil, F.C. : Categorical effects in

3) Bellugi, U., Lichtenberger, L., Jones, W., et
al. : The neurocognitive profile of Williams
syndrome: a complex pattern of strengths and
weaknesses. In : Linking cognitive neuroscience
and molecular genetics: new perspectives from
Williams syndrome (eds Bellugi, U. and St.
4) De Gelder, B., Teunise, J-P., Benson, P.J. :
Categorical perception of facial expressions:
categories and their internal structure. Cogn
5) Deruelle, C., Mancini, J., Livet, M.O., et al. :
Configural and local processing of faces in
children with Williams syndrome. Brain Cogn,
6) Diamond, R., Carey, S. : Why faces are and are
not special : An effect of expertise. J Exp
7) 遠藤光男・顔の認識過程。顔と心。顔の心理学入
門 (吉川・紀学, 益谷 真, 中村 真, 編). サイ
エンス社, 東京, 1993, pp.170-196.
8) Etcoff, N.L., Magee, J.J. : Categorical perc-
ception of facial expressions. Cognition, 44 :
9) Farah, M.J. : Visual Agnosia. MIT press,
Philadelphia, 1990 (河内、福澤。訳: 視
覚性失認, 新興医学出版社, 東京, 1996).
10) Gauthier, I., Tarr, M.J. : Becoming a "Gree-
bles" expert : Exploring mechanisms for face
recognition. Vision Research, 37 : 1673-1682,
1997.
11) Gauthier, I., Tarr, M., Anderson, A.W., et al. :
Activation of the middle fusiform 'face area'
increases with expertise in recognizing novel
12) Gauthier, I., Skulaski, P., Gore, J.C., et al. :
Expertise for cars and birds recruits brain
areas involved in face recognition. Nat Neuro-
following and pattern discrimination of face-
lke stimuli by newborn infants. Pediatrics,
Abstract

Specificity and innateness of face recognition

Chiyoko Nagai*

Specificity of face recognition was discussed in terms of prosopagnosia and Williams syndrome researches. First, we examined prosopagnosic patients on a new face recognition test with superimposed computed images by morphing. The results showed that prosopagnosic patients had wide differential threshold suggesting the low accuracy of judgment compared with normal subjects; but more important findings were that patients tended to choose the more similar comparative stimuli on the similarity judging task as well as normal subjects. These findings reflect categorical perception and they suggest that the disturbed categorical level of recognition for prosopagnosia may be defined by expertise level. Recently some fMRI studies gave evidence in support of our findings and cast some doubt on specificity of face recognition. Second, I took up some recent reports concerning face recognition for Williams syndrome patients. Williams syndrome is known as a genetically based disorder with cognitive characteristics expressed as "peaks and valleys"; they show relative strengths in language and facial processing and profound impairment in spatial cognition, which supports modularity of face recognition. But some reports investigated local/global cognitive ability respectively on both face and non-face recognition, which concluded that Williams syndrome patients recognized faces in terms of local features instead of global features unlike normal subjects. They also constrain the specificity of face recognition. In conclusion, we have many problems to be solved to declare that a face is special.

*Department of Neurology, Neurological Institute, Tokyo Women's Medical University. 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan