Occurrence of Vibrio parahaemolyticus in the Cultured Japanese Horse Mackerel Trachurus japonicus

Ryutaro UEDA1, Yuko KOIDE1, Tomomi SATO1 and Haruo SUGITA2

Abstract: This study was undertaken to examine the occurrence of Vibrio parahaemolyticus in the cultured Japanese horse mackerel Trachurus japonicus. V. parahaemolyticus was detected in 20 to 80% of fish specimens collected in the warmer season with mean densities of 3.6 × 10² to 5.4 × 10³ MPN/100 g. In water samples, low densities of V. parahaemolyticus (36 MPN/100 ml) were detected at water temperatures of 22.8 – 27.5°C. PCR amplification was performed for four strains of V. parahaemolyticus isolated from the fish, and all isolates examined were an avirulent type (toxR gene-positive and tdh-and trh-negative).

Key words: Vibrio parahaemolyticus; Japanese horse mackerel; Trachurus japonicus; Vp-toxR

Vibrio parahaemolyticus is a marine bacterium that is known to be responsible for vibriosis in marine animals such as abalone, crustaceans and fish (Buller 2004). This bacterium is halophilic and widely distributed in seawater, plankton and fish in both tropical and temperate zones (Colwell 1984). Taken together, these attributes increase the likelihood of vibriosis in marine animals, along with human gastroenteritis. In addition, the Japanese horse mackerel Trachurus japonicus is a commercially important aquaculture species and 3,000 to 7,000 tons are cultured annually in Japan, almost all of which is consumed raw. This study was therefore conducted to clarify the occurrence of V. parahaemolyticus in the intestinal tracts and gills of cultured horse mackerel.

A total of 65 specimens of Japanese horse mackerel (five fish a month), weighing from 108.5 to 182.0 g, were supplied from a fish farm in Uchiura Bay, Shizuoka Prefecture during the period from October 2002 to September 2003, and in September 2006. Surface seawater samples were concomitantly collected near the fish farm. Both fish specimens and seawater samples were cooled in ice and processed within 5 h after collection. Fish specimens were dissected aseptically to remove the intestinal tracts of the fish. Intestinal contents and gills were separately homogenized in nine volumes of 2% NaCl-phosphate buffered saline (PBS; pH 7.4). The V. parahaemolyticus density was estimated using the most probable number (MPN) method according to a manual of Japan Food Hygiene Association (1998). Moreover, representative strains were then assayed using PCR detection for the Vp-toxR, tdh and trh genes (Bilung et al. 2005).

V. parahaemolyticus densities in seawater samples and fish specimens collected during the period from October 2002 to September 2003 and September 2006 are shown in Table 1. Water temperatures ranged from 15.2°C in January to 27.5°C in September 2003. Low densities (36 MPN/100 ml) of V. parahaemolyticus were detected in October 2002, and August and September 2003 (water temperatures of 22.8 – 27.5°C). This bacterium was detected in only three out of 65 gill samples at a mean density of 3.6 × 10² MPN/100 g during the investigation period. In addition, V. parahaemolyticus was detected in 17 out of 65 intestinal samples with mean densities of 3.6 × 10² to 5.4 × 10³ MPN/100 g. Especially, in the warmer season (October 2002, and May through September), 20 to 80% of the intestinal samples possessed this bacterium. These observations for V. parahaemolyticus densities in the fish specimens and seawater sampled in the warmer season corroborated those in the review of Colwell (1984).

Moreover, four V. parahaemolyticus isolated in September 2006 were assayed for toxR, tdh and trh genes by PCR. The toxR gene is involved in the regulation of toxin production in numerous Vibrio species, and Kim et al. (1999) established a toxR-specific PCR protocol for the detection of V. parahaemolyticus. Four isolates examined were all toxR gene-positive and tdh- and trh-negative. The result of toxR-PCR assay suggest that V. parahaemolyticus isolates were correctly identified by the phenotypic characterization in this study.

V. parahaemolyticus is considered to consist of two

Received January 23, 2009; Accepted August 11, 2009.

1Department of Food and Nutrition, Nihon University, Mishima, Shizuoka 411-8555, Japan.
2Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-8510, Japan.
*Corresponding author: E-mail: ueda.ryutaro@nihon-u.ac.jp.
types, virulent and avirulent, with the former type possessing thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH). Tdh and trh genes are involved in the production of TDH and TRH, respectively, both of which are considered to be an important virulence factor (Tada et al. 1992). The finding that these genes were not detected in four V. parahaemolyticus isolated from the Japanese horse mackerel in this study means that these were all the avirulent type. However, marine environments provide a habitat where vibrios can be exposed to high levels of gene transfer by transduction, and consequently, putative transfers of virulence factor genes like tdh and trh can occur between marine bacteria (Nishibuchi and Kaper 1995). The possibility therefore exists that avirulent types of V. parahaemolyticus occurring in cultured fish have the potential to become virulent and cause gastroenteritis in marine animals and humans. Surveillance for this bacterium in cultured fish species should thus always be conducted to prevent the outbreaks of this bacterium.

This research was supported, in part, by Nihon University Individual Research Grant and by the Research Grant of the Research Institute of Sciences for Living in 2006, College of International Relations, Nihon University.

References


