福島県太平洋岸におけるイシカワシラウオの産卵*）

秋元義正1）・鈴木雄2）・遠藤克彦1）
（1）福島県水産試験場・2）福島県農政部水産課）

Spawning of the Ishikawa Icefish, Salangichthys ishikawae, off the Pacific Coast of Fukushima Prefecture

Yoshimasa AKIMOTO, Kaoru SUZUKI and katsuhiko ENDO

イシカワシラウオ, Salangichthys ishikawae, は、和歌山県からの青森県1）にいたる太平洋沿岸に分布する日本固有のシラウオ科魚類で、関東・東北では冬から春にかけて沿岸漁業の重要対象魚種のひとつとなっている。

しかし、その本県漁獲量は1975年114.9トン、1980年24.0トン、1985年14.9トン、1987年4.2トンで減少傾向にあり、資源回復の手段を考えるための基礎情報となる生態・生息環境の解明が急務となっている。

本種については、卵巣の成熟過程1）～5）や、砂波帯での仔魚・成熟魚の出現期1）の推定がなされているが、産卵場その環境については知見が乏しい。

本研究は、福島県沿岸でのイシカワシラウオの産卵場を確認し、本種の産卵期の環境特性を把握することを目的として行ったものである。

材料と方法

調査海域・調査期間 漁民からの聞き取りと既存調査資料に基づいて、産卵場が存在すると推定された福島県中央海域の前田川河口、熊川河口、小良ヶ浜の各地先を調査場所として選定し、各調査地点を設定した（図1）。

調査は1987年2月10日から同年6月24日の間に行っ

図1 調査海域の位置と地形

*） 本報の概要は昭和63年度日本水産学会春季大会で発表した。
受領日：1990（H 2）年5月14日
索引語：イシカワシラウオ／産卵場／環境特性
連絡先：〒970-03 福島県いわき市小名浜下神白字松下13-2 福島県水産試験場 秋元 義正
Address: Y. AKIMOTO, Fukushima Pref. Fish. Exp. Stat., Matsushita, Shimokajiro, Iwaki, Fukushima 970-03, Japan
卵の採取 インカワシラウオは粘着卵を産卵し、卵は海底の砂などに付着する。そこで本種の成熟卵の採取には、卵が付着した底砂を採取して砂中から受精卵を選別する方法をもちいた。底砂の採取は、後述の底質調査用の資料採取をも含めて、とり型探泥器（18.5×19.5×7.5cm）を用いてSCUBA 潜水によって行った。各調査地点から採取した底質資料のうち約500gを10%中性アルカリ水溶液で固定して実験室内に持ち帰り、0.8mmメッシュのふるいで微粒を除去したのちローズベンガルで染色し、その中に肉眼で本種の受精卵を拾いだした。

孵化実験 6月6日に、受精卵が付着している砂50gを海水に浸して実験室に持ち帰り、水槽（30×20×20cm）に卵を浮き網で収容して、24時間流水で水温14．1～17．2℃で卵の発生、孵化を観察した。

環境調査 採取した底質資料のうち約300gを冷蔵庫で保存し、底質の粒度組成を神戸海洋気象台台式検出ふるいを用いて調査した。その他の産卵場環境として、調査時の水深、水温、塩分濃度を測定しSCUBA 潜水によって海底地形を調査した。

なお、採泥と海底地形調査は、三洋水路測量株式会社に委託して行ったものである。

結果
卵の出現 調査海域でのインカワシラウオの受精卵の採集結果は、表1に示すとおりである。

前川河口地先では2月10日から4月28日までに6回、熊川河口地先では2月10日から5月21日の間に7回の調査を行ったが、すべての調査で卵は採集されなかった。両海域での上記以後の期間での卵の出現は、採集を行わなかったので不明である。

小良ケ浜では、2月10日から6月24日までに9回の調査を行った。4月13日までの前半期では、2月27日に20地点中の1地点で卵が1回採集されたのみであったが、5月21日には1地点（水深5－6m）で39卵が採集された（図2A）。これらより約100m沖合の1地点（水深5.5m）と約80m岸よりの1地点（水深4.7m）では卵は採集されなかった。

この5月21日の調査で小良ケ浜地先海域がインカワシラウオの産卵場であること、産卵場所がごく狭い範囲であることが推定されたので、以降3回の調査では調査範囲を狭め、より多数の調査地点を設けて採集を

<table>
<thead>
<tr>
<th>表1 調査海域におけるインカワシラウオの採卵数</th>
</tr>
</thead>
<tbody>
<tr>
<td>前田川地先</td>
</tr>
<tr>
<td>調査</td>
</tr>
<tr>
<td>月日</td>
</tr>
<tr>
<td>2月10</td>
</tr>
<tr>
<td>2月27</td>
</tr>
<tr>
<td>3月17</td>
</tr>
<tr>
<td>3月27</td>
</tr>
<tr>
<td>4月13</td>
</tr>
<tr>
<td>4月28</td>
</tr>
<tr>
<td>5月21</td>
</tr>
<tr>
<td>6月6</td>
</tr>
<tr>
<td>6月16</td>
</tr>
<tr>
<td>6月24</td>
</tr>
<tr>
<td>合計</td>
</tr>
</tbody>
</table>

*: 調査せず
行った。
6月6日の調査では、約200×200mの範囲（最短距離約200m、水深3.3−5.2m）に設けた12地点で採集を行ったところ、10地点から約7,752個の卵が得られた（表1）。卵の分布は一様ではなく、4地点から集中的に採集された（図2-B）。この4地点の水深は4.2−4.8mであった。
6月16日には前回卵が多数採集された水域範囲内に3地点を設けて採集を行った。いずれの地点でも卵が得られたが（総卵数113）、採集卵数は2−73個と地点間の変異が大きかった（図2-B）。調査地点の水深は5.0−5.2mであった。
6月24日に7地点で行った調査では、2地点（水深はいずれも5.2m）では卵が採集されなかった。他の5地点（水深4.7−5.3m）で採集卵数は2−17個と少なくて（図2-B）。調査地点数が前回の2倍以上であっ

表2 採集したイシカワシラウオ卵の発生段階分布

<table>
<thead>
<tr>
<th>月/日</th>
<th>5/21</th>
<th>6/6</th>
<th>"</th>
<th>"</th>
<th>"</th>
<th>"</th>
<th>"6/16"</th>
<th>"6/24"</th>
<th>"</th>
<th>"</th>
<th>"</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. No</td>
<td>21</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>採集卵数</td>
<td>39</td>
<td>598</td>
<td>4</td>
<td>2</td>
<td>6000</td>
<td>1</td>
<td>5</td>
<td>787</td>
<td>1</td>
<td>315</td>
<td>39</td>
</tr>
<tr>
<td>発生状況</td>
<td></td>
</tr>
<tr>
<td>調査卵数</td>
<td>37</td>
<td>58</td>
<td>2</td>
<td>2</td>
<td>51</td>
<td>1</td>
<td>5</td>
<td>54</td>
<td>1</td>
<td>52</td>
<td>39</td>
</tr>
<tr>
<td>発生段階</td>
<td></td>
</tr>
<tr>
<td>1. 胚体がまだ形成されない</td>
<td>11</td>
<td>22</td>
<td>2</td>
<td>1</td>
<td>45</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2. 胚体が3/4周</td>
<td>22</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>19</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. " ほぼ1周</td>
<td></td>
</tr>
<tr>
<td>4. " 11/2周(眼は白い)</td>
<td>4</td>
<td></td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" 11/2−2周(発眼卵)</td>
<td></td>
</tr>
<tr>
<td>5. 眼の黄色は薄い</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 眼の黄色は濃い</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>26</td>
<td>19</td>
<td>21</td>
<td>14</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. 孵化により破れて残された卵殻</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
たにもかかわらず、採集した総卵数は37個で、前回より少なかった。

卵の発生段階　採集した受精卵は直径0.95～1.15mm平均0.98mmで、反転した外卵殻には1個から5個、多くは2～3個の貝殻片あるいは砂粒（直径0.2～0.5mm前後）が付着していた（写真1）。

採集された卵は、1）卵体未形成、2）卵体が卵黄を3/4周、3）卵体が卵黄をほぼ1周、4）卵体が卵黄を11/14周（眼の色素を欠く）、5）卵体が卵黄を1/2～2周（眼の黒色素は薄い（発眼卵）、6）卵体は前期と同様、眼の黒色素は濃い、7）孵化ずみの7つの発生段階に区分し、採集卵の発生状態を調査した（表2）。

同一日、同一調査場所（小良ケ浜地先）からの卵の発生状態を見るに、6月6日、6月16日、6月24日のいずれの調査でも、発生段階は上記の第1段階から第7段階まであってまちまちであった。また、同一地点でも各段階の卵が出現するかわりに、地点間での卵発生段階の違いも認められなかった。さらに、採集日による発生段階の分布にも差異がなかった。

卵の発生速度　水槽内での卵発生状況は卵収容後の翌日より孵化仔魚がみられ、その後、飼育開始日より10日間近に新しい孵化仔魚が見られたが、その後は皆無であった。実験時に卵を発生段階別に収容しなかったので正確な推定はできないが、イシワシラウオの孵化に要する時間は飼育水温14.1℃～15.0℃で約10日であった。

仔魚の全長は、孵化直後で約4.4mmで卵黄が吸収される時期（孵化後10日間～2週間）で6.3mmであった。

産卵場の海底環境　卵が採集された海域は水深5m前後、多くの場合、海底には高さ0.5～1.5mの岩礁が

在あるいは海岸線と並走し、その間は貝殻混じりの底となっていた。場所によっては、岩盤の上に砂利あるいは玉石が堆積し、その上に卵砂が20～30cmの厚に堆積していることもあった。

産卵場地先で39卵が採集された5月21日の2調査点の底質粒度組成をみると、卵が採取されたSt.110は粒径0.42～0.85mmの卵砂と0.25～0.42mmの中砂が資料のそれぞれ62.9%、19.8%を占め、底質は粗中粒が主をなしていた。これに対し卵が採取されなかったSt.109では細砂（0.177～0.250mm）が主体（45.0%）、111では中砂（55.6%）と細砂（20.3%）が主体であった。

卵が大量に採集された6月6日の調査での12地点における粒度組成（図3）でも、30個以上の卵がえられたSt.1, 4, 8, 11, 12では粗砂が60%以上を占めており、採集卵数は30個満でであった。St.2, 3, 6, 7では中砂と細砂で50%以上、卵が採集されなかったSt.5, 10では、卵砂を主体とする底質であった。

彼以降の調査でも同様の傾向が明らかで、6月16日の調査では、卵が多数採集されたSt.21（73個）とSt.23（38個）では、卵砂がそれぞれ83.7%と68.4%を占めていた。

考 察

産卵場　小良ケ浜地先で卵が採取された地点の海底は起伏が激しい岩礁域で、この間に堆積した砂底の狭い範囲が産卵床となっている。その産卵域から50～100m離れた場所では卵は出現しなかった。最も多くの卵が採集された6月6日の調査では、多数の卵が出現した地点では約400の個所を含んでいた（図2B）。

底質　卵は海底の砂や貝殻に付着しており、卵が出現した地点の底質は細砂（0.42～0.84mm）を主体に構成されており、卵砂やシルトでは出現しなかった。

このような産卵場の底質の粒径が大きいことは、付着卵が付着している砂粒が大きいい、波浪などにより巻ききがて分散して減耗を防止していると考えられる。

産卵期　本研究の結果から産卵期は2月から6月まで長期間として推定される。常磐海岸の産卵期に関しては、竹内(1)は成魚の産卵期から産卵を2月、3月と推定、嶺(10)は産卵主期を2月から4月、平本(11)は産卵期を3月〜5月と推定している。なお、SENTA(9)は産卵期が長いことを示唆している。

さらに、福島県温排水調査報告(7)によれば、この海域で全長6.4～7.3mmの仔魚の出現を3月から6月まで確認している。
図 3 小良ヶ浜地先調査海域の11調査地点の底質粒度組成と採集したイシカワシラウオの卵数（1987年5月21日）

孵化実験は天然卵の観察程度に終わったが、孵化に要する時間は水温14.1〜15.0℃で約10日間であった。孵化直後の仔魚の全長は4.4mm前後であり、この仔魚の卵黄は未吸収のものである。卵黄が吸収される頃には全長6.3mmに達していた。これらの見見を総括してみると産卵期は2月から6月の長期間にわたり、この間2〜3月と5〜6月の2回に主産卵がみられるものと推定される。

要 約

1987年2月〜6月の間、福島県の太平洋岸でイシカワシラウオの受精卵の採集と底質環境調査を行った。前田・熊川河口地先では卵は採集されなかった。小良ヶ浜地先では2月27日に1卵が出現し、5月21日〜6月24日目には水深約5mの砂底から大量の卵が採集された。

いずれの調査時でも、卵は狭い地域に集中して出現し、その発生段階はさまざまであった。水槽中（水温14.1〜15.0℃）では収容卵が孵化するのに約10日を要した。これらの観察から、イシカワシラウオが沿岸の砂底で産卵すること、産卵地は狭いこと、産卵期は長く、調査水域ではすくなくとも2ヶ月から6ヶ月までにわたること、産卵初期中には産棄群が継続的に産卵していることが判明した。

謝 辞

本研究をまとめるに当たって、本校を務めた東京水産大学多紀保彦教授に深く感謝申し上げます。また、本研究の実施にあたり種々ご協力をいただいた東京電力株式会社と三洋水温測量株式会社の職員の方々に感謝します。

文 献

1) 益田 一・尼岡邦男・荒賀忠一・上野輝彌・吉野哲夫（1974）：日本産魚類図鑑（解説）。東海大出版会、東京、pp. 34.
2) 竹内 啓（1975）：福島県産シラウオの研究—II。イシカワシラウオの産卵期。福水試研報。（2）、1-8。
3) 堀 義彦（1969）：イシカワシラウオ Salangichys ishikae Wakiya et Takahashi の生活について I。成長・二次性徴・卵巣抱卵数について。
7) 福島県温排調査管理委員会（1983）：昭和58年度温排水調査報告書. 200-221.
8) 福島県温排調査管理委員会（1984）：昭和59年度温排水調査報告書. 121-199.
9) 福島県温排調査管理委員会（1985）：昭和60年度温排水調査報告書. 167-254.
10) 福島県温排調査管理委員会（1986）：昭和61年度温排水調査報告書. 110-144.
12) 福島県温排調査管理委員会（1988）：昭和63年度温排水調査報告書. 93-149.