休耕・耕作放棄水田の植物群落タイプと管理履歴の関係
－茨城県南部桜川・小貝川流域を事例にして－

The relationships between the management history and vegetation types of fallow paddy field and abandoned paddy fields
－Case study of Sakuragawa and Kokaigawa river basin in Ibaraki prefecture－

楠本良延*, 大黒俊哉*, 井手任*, Yoshinobu Kusumoto*, Toshiya Ohkuro*, Makoto Ide*
(*農業環境技術研究所)
(*National Institute for Agro-Environmental Sciences)

I はじめに

近年、日本各地で急速に進む水田の休耕・耕作放棄は、農国の食料生産ポテンシャルの低下を招くとともに、管理形態の変化に伴い農業景観における二次的な自然環境を大きく変容させている。一方で河川改修や埋立などにより湿地環境が減少した現在にあって、休耕・耕作放棄水田が多く発生する地域を含めた、湿地の生物多様性の観点から、代替生息地として捉えられつつある。農耕地を中心とした二次的な自然環境や休耕地・耕作放棄地に生息する生物について、農業管理形態の変化による影響を的確に把握し、影響を予測することは緊急の課題である。

そうした中、従来型の農法である、稲起、代播き、刈り取りなどの管理形態が水田における生物相の基盤である植物相の多様性を支えていることが明らかになりつつあり、日本各地の休耕・耕作放棄水田において、生物の生息空間を維持することを目的として、粗放的な植生管理が行われ始めている。中川間地を対象地とし、休耕期数にかかわらず植生変化を把握し、労力や復田コストに配慮した維持管理の方法も提案されている。

休耕・耕作放棄水田の植生変化は、上記のような放棄年数という時間軸との関連で述べられることが多い。しかし、実際には、対象地の地形や土壤などの立地特性に代表される自然的要因と、人为的要因である耕作停止後の管理履歴の違いが植生遷移の方向や速度に影響を及ぼす重要な要因であると考えられている。

本研究は、国内の農業景観の主な構成要素である大規模河川下流域の低地および台地に分布する水田生態系を対象として、植物群落と自然立地との対応関係を把握するうえで、休耕・耕作放棄に伴う管理履歴の変化が植生の空間分布にどのような影響を及ぼすかについて明らかにし、休耕・耕作放棄水田の保全管理に際し、基礎的知見を提示することを目的とした。

II 調査地と調査方法

1. 調査地の概要

 調査対象地域として、茨城県南部小貝川・桜川流域の農村景観地域に分布する休耕・耕作放棄水田を選定した。当地域は戦前から市を中心に1970年頃より急速な都市化が進行したが、一方では都市化が及んでいない地域も残されており、農地や樹林地も存在する。対象地域は沖積低地と洪積台地からなり平坦である。主に沖積低地には圃場整備のための規模大規模水田が割合高く、洪積台地には台地が分布している。

 同地域の植生は植物社会学、ヤブツバキクラスシュに属するか、ほとんどは代謝植物として、コナラ林（クヌギ＝コナラ群集）、アカマツ林（アカマツ群落）、水田雑草群落、水田耕作雜草群落、芝生雑草群落、広域耕作雑草群落などが分布する。
2. 調査方法
対象地域内の休耕・耕作放棄水田を対象とし、2002年から2003年において植生調査を実施した。調査方法・調査項目は以下のとおりである。各調査地点ごとに1m×1mの方形区を設定し、全出現種の被度を測定した。得られた植生データは階層型クラスター分析により分析した。なお、地点間の群集類似度にはユークリッド距離をクラスタリング法はワード法を用いた。分類群についてはINSPAN (Indicator Species Analysis) を行い、指標種群を抽出するとともに、生態型の重合を整理し植物群落タイプの解析を行った。記の計算にはPC-ORD を用いた。

また、土壌図、地質図、表層地質図のオーバーレイ解析により、自然立地区分を行うとともに、上述の群落タイプとの対応関係を解析した。
さらに、植生調査を実施した休耕田・耕作放棄水田のうち、自然立地区分と植物群落の対応関係が明らかでない調査地点のうち58地点において、地図図などから判定した地質図（または管理者）を対象として、当該水田の管理履歴等に関するヒアリング結果を2004年に行ないヒアリング項目は表1に示す。
以上の結果に基づき、管理履歴の違いによる休耕田・耕作放棄水田植生の種組成等への影響を解析し、さらに得られている自然立地区分及び人為条件、空間配置との対応関係による群落タイプ類型を再整理した。

<table>
<thead>
<tr>
<th>表1 地図者へのヒアリング項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)休耕年数</td>
</tr>
<tr>
<td>4)耕起の有無</td>
</tr>
<tr>
<td>7)引水の有無</td>
</tr>
<tr>
<td>10)細作の有無</td>
</tr>
<tr>
<td>13)後続者の有無</td>
</tr>
</tbody>
</table>

3. 結果

1. 群落タイプ（種組成）の分類
対象地に分布する休耕・耕作放棄水田222地点について植生調査を行った結果、全出現種数は254種であった。まず、休耕・耕作放棄とともに種組成の変化を把握するために、全サンプルを用いて階層型クラスター分析およびINSPANを行った。また、分類群ごとの特徴を明確にするため生活型優占割合を乾性一年草、乾湿性多年草、湿性多年草、水湿植物、木本植物として整理し群落タイプの解析を行った。分類結果を表2に示す。調査区の植生はタクノアシ、マツカサススキ、ヒロハホウキキクなどを指標種とする水湿植物優占タイプ、イネ、アゼン、チョウガタデなどを指標とする黴湿適応型雑草タイプ、タカサブロウ、ヒデリコ、ヤナギタデなどを指標とする乾性一年草優占タイプ、セイカアワダチソウ、ススキを指標種とするセイカアワダチソウ優占タイプ、アシカリ、ガマを指標種とするガマ優占タイプ、ヨシを指標種とするヨシ優占タイプ、クサヨシを指標種とするクサヨシ優占タイプ、オギ、サデクサ、タチヤギなどを指標種とする木本植物優占タイプの9タイプの植物群落に分類された。

2. 自然立地単位の抽出
調査区域に該当する土壌、地形、表層地質の主たる要因をGISを用いたオーバーレイ、各主たる要因のカテゴリーを変数とした対応分析、第三成分までのサンプルスコアを用いたクラスター分析により①河原・河川湖沼域、②谷底平野（低流域）－灰色低地土壌、③自然堤防－褐色低地土壌、④湖岸低地、⑤谷底平野（台地域）－多湿黒ボク土壌、⑥台地－黒ボク土壌の6つの自然立地単位を抽出した。

3. 群落タイプと自然立地の関係
以上の結果に基づき、群落タイプと自然立地単位との関連性についてクロス集計を行い、対応関係の強さを表す四分点相関係数を計算し分析を行った。また、現場で確認できるレベルでの管理・転作状況を整理した（表3）。その結果、①水湿植物優占タイプは谷底平野（台地域）－多湿黒ボク土壌、②ガマ優占タイプは湖岸低地域、③クサヨシ優占タイプの木本植物優占タイプは河原・河川湖沼
域とそれぞれ結びつきが強かった。また、②潮性一年草優占タイプ、⑦ヨシ優占タイプはほぼ全域に出現し、特に低地帯に限定される。一方で谷底平野（低地域） - 灰色低地土と谷底平野（台地域） - 石抜土域では、多様な群落タイプとの関連性が認められなかった。

4. 管理履歴のヒアリング調査・解析による群落タイプと管理履歴の関係

それぞれの群落タイプがどのような管理履歴を背景に成立しているかを明らかにするため、多様な植物群落タイプとの関連性が認められる谷底平野（低地域） - 灰色低地土域と谷底平野（台地域） - 石抜土域において成立する群落タイプが、①～⑨を所有する地権者および管理者に対して実施した14項目からなるヒアリング調査表（N=58）を整理し、分類された群落タイプを従属変数に、ヒアリング項目の管理履歴をダミー変数化したものを独立変数として重回帰分析による判別分析を行った。分析にあたっては多重共線性の問題回避のため、相関係数の高い変数どうしはそのどちらかを非とするモデル構築を繰り返し、最終的には各とのまりのよい変数を選択することができるスチュップワイズ法を用いた。分析結果を表4に示す。結果に基づき、管理履歴と植物群落タイプの関係を模式的に表したものを図1に示した。すなわち、①水湿植物優占タイプは3年毎に1回の起土と土壤水分状態が乾燥していな変数が選択された。②湿性類型区類草タイプ

<table>
<thead>
<tr>
<th>表2</th>
<th>クラスター分析により区分された群落タイプごとの生活型別優占割合（％）およびINSSPANによ抽出された指標種群</th>
</tr>
</thead>
<tbody>
<tr>
<td>群落タイプ</td>
<td>平均出</td>
</tr>
<tr>
<td>①水湿植物優占タイプ</td>
<td>8.2</td>
</tr>
<tr>
<td>②湿性類型区類草タイプ</td>
<td>7.3</td>
</tr>
<tr>
<td>③湿性類型区類草タイプ</td>
<td>11.4</td>
</tr>
<tr>
<td>④潮性一年草優占タイプ</td>
<td>7.0</td>
</tr>
<tr>
<td>⑤湿性類型区類草タイプ</td>
<td>8.3</td>
</tr>
<tr>
<td>⑥水湿植物優占タイプ</td>
<td>7.6</td>
</tr>
<tr>
<td>⑦湿性類型区類草タイプ</td>
<td>8.8</td>
</tr>
<tr>
<td>⑧水湿植物優占タイプ</td>
<td>12.8</td>
</tr>
<tr>
<td>⑨水湿植物優占タイプ</td>
<td>9.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表3</th>
<th>クラスター分析により区分された群落タイプと自然立地条件の関連性</th>
</tr>
</thead>
<tbody>
<tr>
<td>群落タイプ</td>
<td>河面・河川湖沼域</td>
</tr>
<tr>
<td>①水湿植物優占タイプ</td>
<td>(2)</td>
</tr>
<tr>
<td>②湿性類型区類草タイプ</td>
<td>-</td>
</tr>
<tr>
<td>③湿性類型区類草タイプ</td>
<td>-</td>
</tr>
<tr>
<td>④潮性一年草優占タイプ</td>
<td>-</td>
</tr>
<tr>
<td>⑤湿性類型区類草タイプ</td>
<td>-</td>
</tr>
<tr>
<td>⑥水湿植物優占タイプ</td>
<td>(2)</td>
</tr>
<tr>
<td>⑦水湿植物優占タイプ</td>
<td>(2)</td>
</tr>
<tr>
<td>⑧水湿植物優占タイプ</td>
<td>(2)</td>
</tr>
<tr>
<td>⑨水湿植物優占タイプ</td>
<td>(2)</td>
</tr>
<tr>
<td>調査区数</td>
<td>17</td>
</tr>
</tbody>
</table>
は、1年に1回以上の耕起と土壌水分状態が湛水、
引水管理が選択された。⑤徳水溝型雑草タイプ
は1年に1回以上、もしくは2年に1回の耕起、
土壌水分状態が乾燥、転作無しが選択された。⑥
乾燥一年草優占タイプは1年に1回以上の耕起、
土壌水分状態が乾燥、転作無しが選択された。⑦
セイタカアワダチソウ優占タイプは耕起無し、
土壌水分状態が湛水ではない、刈取が有りが選択
された。⑧ガマ優占タイプは耕起無し、土壌水分
状態が湛水が選択された。⑨ヨシ優占タイプは2
年に1回の耕起、5年以上10年未満に一回の耕
起、火入、休耕年数が選択された。

V 考察

休耕・耕作放棄水田に生育する多様な植物群落
タイプの成立には、自然立地条件と休耕・放棄
後の管理形態（管理履歴）が重要な要因であると
考えられる。以下に植物群落タイプと管理履歴の関
係を中心に整理した。
(1) 水湿植物優占タイプ

主に、谷底平野（台地域）－黒ボク土壌に分布

<table>
<thead>
<tr>
<th>表4 判別分析から抽出された群落タイプごとに寄与している管理履歴</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
</tr>
</thead>
<tbody>
<tr>
<td>管理形態</td>
<td>管理形態</td>
<td>管理形態</td>
<td>管理形態</td>
<td>管理形態</td>
<td>管理形態</td>
<td>管理形態</td>
<td></td>
</tr>
<tr>
<td>耕起（1年に1回以上）</td>
<td>耕起（1年に1回以上）</td>
<td>耕起（1年に1回以上）</td>
<td>耕起（1年に1回以上）</td>
<td>耕起（1年に1回以上）</td>
<td>耕起（1年に1回以上）</td>
<td>耕起（1年に1回以上）</td>
<td></td>
</tr>
<tr>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td></td>
</tr>
<tr>
<td>非湿</td>
<td>湿</td>
<td>湿</td>
<td>湿</td>
<td>湿</td>
<td>湿</td>
<td>湿</td>
<td></td>
</tr>
<tr>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td></td>
</tr>
<tr>
<td>動作</td>
<td>動作</td>
<td>動作</td>
<td>動作</td>
<td>動作</td>
<td>動作</td>
<td>動作</td>
<td></td>
</tr>
<tr>
<td>轉作無し</td>
<td>轉作無し</td>
<td>轉作無し</td>
<td>轉作無し</td>
<td>轉作無し</td>
<td>轉作無し</td>
<td>轉作無し</td>
<td></td>
</tr>
<tr>
<td>休耕年数</td>
<td>休耕年数</td>
<td>休耕年数</td>
<td>休耕年数</td>
<td>休耕年数</td>
<td>休耕年数</td>
<td>休耕年数</td>
<td></td>
</tr>
<tr>
<td>1年</td>
<td>2年</td>
<td>3年</td>
<td>4年</td>
<td>5年</td>
<td>6年</td>
<td>7年</td>
<td></td>
</tr>
<tr>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td>土壌水分状態</td>
<td></td>
</tr>
<tr>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td>下限</td>
<td>上限</td>
<td></td>
</tr>
</tbody>
</table>

図1 休耕・耕作放棄水田における植物群落タイプと管理履歴との対応模式図

10 農村計画論文集 第7集 2005年11月
し、3年に1回程度の耕起が行われ、土壌水分レベルが湿潤の場合では水没植物優占タイプが成立していた。生育地は対照地に残存する谷津田であることが多く、立地特性として土壌が湿潤である。他の群落タイプに対して、圃場整備が行われていない水田を多く含むため、大型機械の搬入などが望めない場合があり管理が困難、または谷津田であるため生産性が低いという理由により、耕作放棄水田になりやすい傾向がある。しかし、3年以上無管理の状態を続けるとヨシやガマに代表される大型多年生草本や木本種が侵入し、復帰が困難になるため、3年に一度の頻度で耕起される粗放的管理が結果的に平均出現種数13と種多様性に富むこの群落タイプの成立を支えていると考えられる。絶滅危惧植物であるカコノアシやミズワラビ、ミゾコウジュなどは確認された。また、谷底平野（低地域）-灰色低地土壌に分布する圃場整備された耕作放棄水田があっても、数地点この群落タイプが分布していた。これらの圃場は適度な引水と耕起管理を行っていることが確認された。

(2) 酔水適応型雑草タイプ

1年に1回以上の耕起で積極的な引水を行っており、土壌水分レベルが湿潤の状態で湿性一年草を中心とした雑草群落タイプが成立していた。自然立地単位には依存しないタイプである。近年将来に復帰を前提とした調整水田12)であり、カタクリやアカナに代表される典型的な水田雑草群落種群で構成されていた。

(3) 酔水適応型雑草タイプ

1年から2年に1回の耕起で引水管理が行われており土壌水分レベルが満潤な場合に成立していた。湿性一年草が優占している酔水適応型の群落タイプである。上記の調整水田タイプに比べると復帰を前提として比較的粗放な管理のため一年生草本が中心ではあるが平均出現種数が13と種多様性は高い群落であると考えられる。

(4) 乾性一年草優占タイプ

転作（客土を含む）し、年1回の耕起を行い土壌水分レベルが乾燥の状態で成立する群落タイプである。転作作物としてオオムギや観芸花卉を栽培した後、休耕・耕作放棄された圃場に多く見られた土壌が乾燥しているため、セイタカアワダチソウなどの大型多年生草本やアカメガシワなどに代表される先駆け木本種などの侵入植物が定着しやすいと考えられる。

(5) セイタカアワダチソウ優占タイプ

耕起などの管理を行わない、土壌水分レベルが乾燥している状態にはセイタカアワダチソウ優占タイプが成立していた。大規模な圃場整備が行われ、積極的な引水などの管理をしない土壌が乾燥する圃場に多く、低地域の農業景観をよく確認できる群落タイプである。平均出現種数は8であり植物種の多様性は低い。

(6) ガマ優占タイプ

耕起などの管理を行わず、自然立地的な水分のポテンシャルが高く土壌水分レベルが満潤状態にはガマ優占タイプが成立していた。谷底平野（低地域）-灰色低地土壌と谷底平野（台地形）-黒ボク土壌の双方において谷津田などに代表される土壌の水分ポテンシャルが低い圃場区域において、特に過湿な立地に分布していた。

(7) よシ優占タイプ

過去に耕起を含む多様な管理（耕起、火入、刈取、引水など）を行っているが、放棄年数が長期に及ぶ場合にはヨシが優占タイプとなる。一度ヨシが侵入してしまうと復帰することが困難になり、復帰コストも増大するため、放棄水田として定着する場合が多い。土壌の水分ポテンシャルが満潤である谷津田において放棄年数が長くなると本群落タイプが成立すると考えられる。平均出現種数は6と、ヨシが高い被度で生育するため植物種の多様性は低い。

以上のように、自然立地単位との対応では明確にできない、それぞれの植物群落タイプの成立要因を管理履歴との関係により明らかにすることが可能となった。

とくに休耕後の耕起の頻度と、引水管理による土壌水分レベルが群落タイプの成立に大きく寄与し、影響を与えていると考えられる。植物種の多様性に富んだ良好な満度性の植物群落は3年に1回程度の適度な耕起と水分ポテンシャルを満足に保つことで維持できることが明らかになった。また、大規模な圃場整備によって乾田化し
た休耕・耕作放棄水田であっても、適度な粗放的管理と引水管理により土壌水分レベルを常に適度に保つことで種多様性に富む群落を創出できる可能性が示唆された。また、復田を前提として高度に管理された耕作田であっても、耕起の頻度を 2年に 1 回程度にすれば、一年生草本が主体であっても比較的、種多様性の高い群落を成立させることができ、地域レベルの生物多様性を維持できる可能性があると考えられる。

謝辞
本研究の実施にあたり、岩井市、牛久市、つくば市、土浦市、取手市、藤代町、龍ヶ崎市、阿見町、伊奈町、利根町、谷村原の農政担当課の皆様、岩井地域、戸崎地域、つくば地域、土浦地域の農業普及改良センターの皆様、ヒアリング調査対象地域の住民、管理者の皆様には多大な協力を頂いた。記して謝意を表す。なお、本研究の実施にあたり、平成 16 年度科学研究費補助金基盤研究（B）を使用した。

注
注1) 休耕田とは、水田に復田するためにとられる最低限の草刈りや耕起を前提とした管理形態をもつ減反反策のため米作りを中断している圃場であり、耕作放棄水田とは、労働力不足等が原因で米作りを中止し、管理放棄された圃場と定義する。
注2) 調整水田とは、耕起、代替さき水稲移植水田と同様の仕組みで、水稲を作る前に水田を管理してい
る圃場と定義する。

参考文献
1) 浅見佳世・中尾昌弘・赤松英志・村田和也（2001）：水生生物の保全を目的とした放棄水田の生息管理手法に関する事例研究。ランドスケープ研究。64(5), pp.571-576。
2) 谷岡裕明・下田路子・中村学・水澤智・森本幸裕（2000）：水生植物および底面性植物の保全を目的とした耕作放棄水田の生息管理。ランドスケープ研究。63(5), pp.491-494。
3) 有田博之・友正達美・河原秀聡（2000）：耕作放棄水田が処理による農業資源保全、農業土木学会論文集。209, pp.109-117。
4) 有田博之・大山真由美・友正達美・大黒俊哉（2003）：水田放棄田の休耕コストからみた農地保全対策 - 新潟県東部地域大島村を事例として -。農業土木学会論文集。225, pp.95-117。
5) 大黒俊哉・有田博之・山本真由美・友正達美（2001）：中新間地域における耕作放棄水田の植物変化が復田作業に及ぼす影響。農村計画論文集。3, pp.211-216。
6) 藤田拓也・石田健治・鳥居秀生・松本賢治（2003）：中新間地域における休耕田の保全管理形態と水田機能維持のための植生指標。2003年度農村計画学会学術研究発表会要旨集。pp.27-28。
7) 宮崎浩 編著（1985）：日本植生誌7 関東、至文堂。661pp。
10) 福本兵延（2004）：生物・社会調査のための統計解析入門：調査・研究の現場から【その7】- 判別分析（判別分析・数理計算II）-，農業土木学会誌。73(2), pp.133-138。
11) 国土庁（1979）：日本植物分類基本調査。土浦図帳。
12) 山田哲・北川亮子・武内和彦（2002）：多摩丘陵の水田休耕田における農事粗放管理について。ランドスケープ研究。65(4), pp.290-293。

Summary: The aim of this study is to indicate the relationships between the management history and vegetation types of fallow paddy field and abandoned paddy fields in low land regions as basic information for the agricultural land resource maintenance. All sampled stands were classified into 9 vegetation types by cluster analysis and INSPAN（Indicator Species Analysis）. Divisions of natural structure were related to some vegetation types, and then we executed the hearing investigation of the management history to the owner of vegetation types with a not clear relation to divisions of natural structure, and management history determining each vegetation type were detected positively by using multiple regression analysis. These results support the conclusion that vegetation types are produced from management history.