芸術科学会論文誌
Online ISSN : 1347-2267
ISSN-L : 1347-2267
一般論文
Supervised Learning of Salient 2D Views of 3D Models
Laga HamidMasayuki Nakajima
著者情報
ジャーナル フリー

2008 年 7 巻 4 号 p. 124-131

詳細
抄録
We introduce a new framework for the automatic selection of the best views of 3D models based on the assumption that models belonging to the same class of shapes share the same salient features. The main issue is learning these features. We propose an algorithm for computing these features and their corresponding saliency value. At the learning stage, a large set of features are computed from every model and a boosting algorithm is applied to learn the classification function in the feature space. AdaBoost learns a classifier that relies on a small subset of the features with the mean of weak classifiers, and provides an efficient way for feature selection and combination. Moreover it assigns weights to the selected features which we interpret as a measure of the feature saliency within the class. Our experiments using the LightField (LFD) descriptors and the Princeton Shape Benchmark show the suitability of the approach to 3D shape classification and best-view selection for online visual browsing of 3D data collections.
著者関連情報
© 2008 Hamid Laga and Masayuki Nakajima
次の記事
feedback
Top