Non-metric dental variation of Sakishima Islanders, Okinawa, Japan: a comparative study among Sakishima and neighboring populations

Kuniaki HANEJI1, Tsunehiko HANIHARA2, Hajime SUNAKAWA3, Takashi TOMA1, Hajime ISHIDA1*

1Department of Anatomy, Faculty of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 903-0215 Japan
2Department of Anatomy and Biological Anthropology, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501 Japan
3Department of Oral and Maxillofacial Functional Rehabilitation, Faculty of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 903-0215 Japan

Received 6 February 2006; accepted 9 August 2006

Abstract Twenty-four non-metric tooth crown traits of Miyako and Ishigaki Islanders, from the southernmost Ryukyu Islands, were investigated and compared with those of neighboring populations. The frequency of double-shoveling in Sakishima samples, and especially, Ishigaki Island, is lower than that found among Atayal people (Taiwan) and main-island Japanese. The frequencies of protostylid and cusp 6 in Miyako and Ishigaki Islanders are comparable to those in Hokkaido Ainu and lower than in main-island Japanese and Atayal. Miyako and Ishigaki Islanders, as well as other Ryukyuans, are basically more similar to main-island Japanese than to Ainu, while being situated between main-island Japanese and Ainu in terms of both mean measure of divergence (MMD) and R-matrix methods. However, Ishigaki and Miyako Islanders are relatively close to Hokkaido Ainu among Ryukyu people and main-island Japanese, as suggested in some previous preliminary studies. The estimated Fst (the ratio of among-group variation to total variation), using an average heritability rate $= 0.55$ for the non-metric tooth crown traits used in this study, displayed low levels of inter-regional variation, as already indicated in analyses of genetic, cranial and dental metric data. Meanwhile, the relatively large diversity of Ryukyu Islanders based on Fst suggested long-term isolation or poor intra-island contact among the Ryukyu Islands. The lower observed variation compared with the expected variation in most Ryukyu samples may reflect a greater degree of genetic drift in the Ryukyu Island chain.

Key words: Miyako, Ishigaki, Ryukyuans, non-metric dental variation, population diversity

Introduction

The Ryukyu Islands are scattered between the main Japanese islands and Taiwan (Figure 1). The nature and ethnicity of Ryukyu Islanders has been described and discussed for more than 100 years (e.g. Hawks and Perry, 1856; von Baelz, 1911). In the field of biological anthropology, many researchers have also been interested in the prehistoric and historic populations of these islands.

Many morphological and genetic studies have suggested that Ryukyu Islanders are generally more similar to main-island Japanese than to the Ainu and Jomon, who were hunter-gatherers in the Japanese archipelago from 10000 to 2000 BP (Ikeda, 1974, 1998; Tagaya and Ikeda, 1976; Dodo et al., 1998, 2000; Hatta et al., 1999; Manabe et al., 1999; Higa et al., 2003; Fukumine et al., 2006), while close relationships between Ryukyu Islanders and Jomon-Ainu samples have also been reported by many researchers (Hanihara et al., 1974; Hanihara, 1991; Matsumura 1994; Omoto and Saitou, 1997; Yamashita et al., 2001; Watanabe et al., 2004; Matsumura and Hudson, 2005). However, the problem is not whether Ryukyu Islanders are close to the Ainu, but why Ryukyu Islanders are relatively close to the Ainu (Fukumine et al., 2006), because modern populations in the Japanese archipelago should essentially have Jomon traits, as indicated by recent genetic studies (Umetsu et al., 2005; Hammer et al., 2006). Thus, we consider that the basic view of the ‘dual structure model’ for Japanese population history proposed by K. Hanihara (1991) is valid for the Japanese archipelago, and remains so (Saitou, 2005; Nagaoka and Hirata, 2006; Osenberg et al., 2006).

Several significant Late Pleistocene human remains have been found on Okinawa Island, and on Kumejima and Miyako Islands (Suzuki and Hanihara, 1982; Sakurai, 1988). Although later prehistoric and historic human remains have been found on Okinawa Island, few prehistoric human skeletons have been recovered from the Sakishima Islands, including Miyako and Ishigaki Islands (Doi, 2003).

Dental characteristics have been studied for not only human evolutionary research, but also for the reconstruction of population history because of intra-populational homogeneity and inter-populational variation (Scott and Turner, 1997).
Hanihara et al. (1974) collected dental casts from the Nakijin people in the northern part of Okinawa Island and showed the intermediate position of Okinawa Islanders between main-island Japanese and Ainu. Recently, non-metric dental variations among Okinawa and Tokunoshima Islands were investigated by collecting dental casts from the Kadena people in the central part of Okinawa Island (Higa et al., 2003). The relatively large intra-regional variation in Ryukyu Islanders was considered in that study; however, we also considered that the whole intra-regional variation, including the southern part of the Ryukyu Islands, e.g. Miyako and Ishigaki Islands, should be investigated to elucidate Ryukyuan diversity and population history.

The Sakishima Islands, including Miyako and Ishigaki Islands, are located about 300–500 km southwest of Okinawa Island, as shown in Figure 1. Late Pleistocene human remains were recovered at Pinza-Abu (Goat Cave), on Miyako Island, between 1979 and 1983 (Sakura, 1985). The prehistoric age of the Sakishima area consisted of two hunter-gatherer cultures from 4000 to 1500 BP, which is somewhat different from Okinawa and Amami Islands, the culture of which is closely related to the Jomon (Ikeda, 2005). From the 10th to 12th centuries AD, the protohistoric cultures of the Okinawa-Amami and Sakishima areas were joined to make the Ryukyu cultural area.

The dentitions of Miyako and Ishigaki Islanders have already been briefly reported by Hanihara (1991) and Manabe et al. (2001, 2003). Hanihara (1991) pointed out that the early Modern people of Sakishima retained Jomon-like dentition. Manabe et al. (2001, 2003) agreed with the supposed gene flow from the Japanese main islands, based on the clineal dental variations from north to south in the Ryukyu Islands after the Jomon period. Unfortunately, however, the sample size was small and the origins of the samples were not always clear.

Here, we collected sufficient numbers of dental casts of native modern Sakishima Islanders from Miyako and Ishigaki Islands to investigate 24 non-metric dental characters, including premolar traits (Higa et al., 2003). The purposes of this study were to present these 24 non-metric dental traits of the Miyako and Ishigaki Islanders, and to evaluate more precisely the intra- and inter-regional dental variations of all Ryukyu Islanders.

Materials and Methods

We gathered plaster casts of permanent dentition from 202 pupils (107 males and 95 females) of Taira Junior High School, situated in the downtown area of Miyakojima City, Miyako Island, in 2004–2005, and from 146 pupils (73 males and 73 females) of Ishigaki and Ishigaki Second Junior High Schools in the downtown area of Ishigaki City, Ishigaki Island, in 2005 (Table 1, Figure 1). The subjects were selected as individuals with no admixture of ancestors from other islands for at least three generations, as reported in our previous study (Higa et al., 2003). The Ethical Committee of the University of the Ryukyus approved the protocol of this study and all subjects gave informed consent.

Table 1. Samples collected in this study

<table>
<thead>
<tr>
<th>Sample name</th>
<th>n (M/F)</th>
<th>Provenience (year)</th>
<th>Preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyako</td>
<td>202 (107/95)</td>
<td>Miyako (2004–2005) from Miyako Island located about 300 km southwest of Okinawa Island</td>
<td>Univ. of the Ryukyus</td>
</tr>
<tr>
<td>Ishigaki</td>
<td>146 (73/73)</td>
<td>Ishigaki (2005) from Ishigaki Island located about 450 km southwest of Okinawa Island</td>
<td>Univ. of the Ryukyus</td>
</tr>
</tbody>
</table>

1 M: male, F: female.
2 Figures in parentheses show the years when the samples were collected.
the traits were scored after a one-year interval, the inter-observer errors of a few traits, e.g. the deutoer-proto relationship ($p = 0.2152$), were relatively large, but insignificant. The inter-observer errors of the all traits were also insignificant, while the lingual paracorne tubercle showed a relatively low probability ($p = 0.1902–0.2420$).

The frequencies of the 24 non-metric dental traits were calculated based on pooled-sex and individual counts, as used in a previous study (Higa et al., 2003). Fisher’s exact probability test was used to evaluate the frequency differences between Miyako and Ishigaki and the comparative samples, respectively. The modified Smith’s mean measure of divergence (MMD) was applied to calculate the estimated biological distance between the pairs of samples used (Sjøvold, 1973). MMD has been commonly used for non-metric cranial and dental traits, and its efficacy has been summarized in a previous paper (Hanihara et al., 2003).

The multidimensional scaling method (Sneath and Sokal, 1973) and the neighbor-joining method (Saitou and Nei, 1987), commonly used in phylogenetic analyses, were applied to the distance matrix in order to graphically represent the mutual relationships.

In addition to MMDs, we analyzed the pattern of affinities among groups, calculating the standard relationship matrix (R-matrix) (Relethford and Blangero, 1990). Using the diagonal elements of the R-matrix (r_{ii}), moreover, we can analyze variations within and among populations (Harpending and Ward, 1982; Relethford and Blangero, 1990; Relethford and Harpending, 1994).

The R-matrix method was originally developed to analyze frequencies of genetic traits (Harpending and Ward, 1982; Relethford, 1994). However, the R-matrix method can also be applied to quantitative morphological traits using the model developed by Relethford and Blangero (1990) (Relethford, 1991, 1994; Relethford and Harpending, 1994; Powell and Neves, 1999; Steadman, 2001; González-José et al., 2003; Roseman and Weaver, 2004; Stojanowski, 2004, 2005; Hanihara and Ishida, 2005; Schillaci and Stojanowski, 2005). Several different approaches have been used to apply the R-matrix method to non-metric morphological data. Hallgrimsson et al. (2004) used non-metric morphological trait frequencies as analogous to allele frequencies to compute the R-matrix and other genetic parameters. Another approach is based on the assumption that non-metric traits are measured as the underlying or latent distribution of liabilities for each trait. This model assumes that trait liability shows a normal distribution, and is dichotomized by the imposition of a threshold. Recent theoretical developments from Bayesian statistics, have given estimates of liabilities via the Gibbs sampler, using the Markov chain Monte Carlo method. Liabilities estimated in this way are then used to calculate the R-matrix (Blangero and Williams-Blangero, 1993; Leigh and Konisberg, 1996; Leigh et al., 2004).

In this study, we calculated the R-matrix and related parameters under the assumption that non-metric trait frequencies behave like allele frequencies because of the very high correlation between the R-matrix and other distance measures, such as MMDs, B-squared distance, and the Mahalanobis distance based on tetrachoric correlation coefficients, etc. However, the matrix correlation is not necessarily a theoretical justification, so the results of this analysis should be interpreted cautiously.

Given any attribute data or trait frequency data, the variance-covariance matrix of population relationships, known as the standard relationship matrix (or R matrix) can be calculated. The elements of the R matrix are estimated for any given trait as

$$r_{ij} = (p_i - \bar{p})(p_j - \bar{p}) / \bar{p}(1 - \bar{p}),$$

where p_i and p_j are trait frequencies in populations i and j, and \bar{p} is the mean trait frequency over all populations (Relethford and Harpending, 1994; Hallgrimsson et al., 2004). The R matrix obtained for each trait is then averaged over all traits. Fst, the ratio of among-group variation to total variation, is defined as:

$$Fst = \sum w_i r_{ii},$$

where w_i is the weighting factor for the relative size of population i, defined as:

$$w_i = N_i / \sum N_j,$$

and N_j is the effective size of population j. In order to make the Fst statistics (or R-matrix) method ‘model-bound’ (Relethford, 1994), the population sizes are required. This method assumes that trait heritabilities are equal to 1. This method of estimating Fst is referred to as minimum Fst (Relethford, 1994). Because phenotypic traits are not completely under genetic control, the actual Fst value can be obtained using estimates of the average heritability of phenotypic traits, or h^2, using the following formula (Relethford, 1994):

$$Fst = \min\{minimum\ Fst + h^2(1 - minimum\ Fst)\}.$$
moderate to high (Roseman and Weaver, 2004).

Results

Table 2 summarizes the observed and affected numbers and frequencies of the 24 non-metric dental traits among Miyako and Ishigaki Islanders and the comparative samples. Fisher’s exact probability test was performed for the Miyako and Ishigaki and the comparative samples, respectively. There are three significant traits between the Miyako and Ishigaki samples: the lingual paracone tubercle, the oblique ridge and the deutero-proto relationship. Among the Ryukyu Islands, eight traits in Kadena were found to be significantly different from Miyako, although only two to three traits in Nakijin and Tokunoshima were recognized, partly because of the small sample size. From Ishigaki Island, five in Kadena, two in Nakijin and seven in Tokunoshima were significantly different. Five or six traits in main-island Japanese and seven or eight traits in Hokkaido Ainu were significantly different from both Miyako and Ishigaki, while the Afghanistan sample has many significant traits.

For the convenience of univariate comparisons, we drew the frequency patterns of several populations, excluding the Afghanistan sample, as shown in Figure 2 and Figure 3.

The Miyako and Ishigaki Islanders have higher frequencies of shoveling than Hokkaido Ainu, but lower than the Atayal sample. The frequencies of double shoveling showed the same tendency, but are more conspicuous in Ishigaki Islanders, who have a significantly lower incidence than not only Atayal and main-island Japanese, but also Kadena. The frequency of the lingual paracone tubercle is the lowest in the Ishigaki Islanders, and a geographical cline from north to south is roughly seen. The lowest frequency of cusp 5 in the Atayal sample is significantly different from that found for the Miyako and Ishigaki Islanders. The frequency patterns of the protostylid, deflecting wrinkle and cusp 6 in the Miyako and Ishigaki Islanders, are similar to those in Hokkaido Ainu, while those in the Kadena, Tokyo and Atayal samples

Table 2: Frequencies of non-metric tooth crown characters and Fisher’s exact probability test for the difference of the trait frequencies between the Miyako and Ishigaki samples and the other comparative samples (per individual, sex combined)

<table>
<thead>
<tr>
<th>Population</th>
<th>Shoveling (U11) % (A/O)</th>
<th>Double-shoveling (U11) % (A/O)</th>
<th>Peg-shaped (U12) % (A/O)</th>
<th>Mesial canine ridge (U12) % (A/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyako</td>
<td>92.9 (169/182)</td>
<td>72.1 (129/179)</td>
<td>3.0 (6/200)</td>
<td>3.3 (5/153)</td>
</tr>
<tr>
<td>Ishigaki</td>
<td>92.2 (118/128)</td>
<td>61.7 (79/128)</td>
<td>0.7 (1/140)</td>
<td>2.9 (1/100)</td>
</tr>
<tr>
<td>Kadena</td>
<td>94.4 (187/198)</td>
<td>79.4 (158/199)</td>
<td>5.2 (11/211)</td>
<td>4.3 (8/185)</td>
</tr>
<tr>
<td>Nakijin</td>
<td>96.3 (52/54)</td>
<td>83.6 (46/55)</td>
<td>3.1 (2/64)</td>
<td>5.8 (3/52)</td>
</tr>
<tr>
<td>Tokunoshima</td>
<td>93.3 (56/60)</td>
<td>78.4 (58/74)</td>
<td>6.4 (5/78)</td>
<td>1.2 (1/84)</td>
</tr>
<tr>
<td>Kagoshima</td>
<td>93.9 (62/66)</td>
<td>84.5 (71/84)</td>
<td>3.3 (3/90)</td>
<td>8.0 (7/88)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>95.6 (86/90)</td>
<td>80.7 (75/93)</td>
<td>1.9 (2/106)</td>
<td>8.1 (7/86)</td>
</tr>
<tr>
<td>Ainu</td>
<td>73.3 (33/45)</td>
<td>41.0 (25/61)</td>
<td>2.4 (2/84)</td>
<td>0.0 (0/58)</td>
</tr>
<tr>
<td>Atayal</td>
<td>100.0 (67/67)</td>
<td>82.3 (65/79)</td>
<td>3.3 (3/92)</td>
<td>5.9 (5/85)</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>25.4 (16/63)</td>
<td>31.8 (28/86)</td>
<td>1.1 (1/89)</td>
<td>7.3 (6/82)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Population</th>
<th>Interstitial tubercle (UP1) mesial % (A/O)</th>
<th>Interstitial tubercle (UP1) distal % (A/O)</th>
<th>Interstitial tubercle (UP2) mesial % (A/O)</th>
<th>Interstitial tubercle (UP2) distal % (A/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyako</td>
<td>47.0 (85/181)</td>
<td>8.5 (16/188)</td>
<td>23.9 (42/176)</td>
<td>8.1 (14/173)</td>
</tr>
<tr>
<td>Ishigaki</td>
<td>43.2 (60/139)</td>
<td>5.7 (8/141)</td>
<td>20.6 (28/136)</td>
<td>13.1 (17/130)</td>
</tr>
<tr>
<td>Kadena</td>
<td>51.4 (91/177)</td>
<td>6.6 (11/166)</td>
<td>24.3 (46/189)</td>
<td>10.3 (19/185)</td>
</tr>
<tr>
<td>Nakijin</td>
<td>57.4 (35/61)</td>
<td>18.2 (5/61)</td>
<td>27.3 (15/55)</td>
<td>11.5 (6/52)</td>
</tr>
<tr>
<td>Tokunoshima</td>
<td>51.9 (41/79)</td>
<td>9.3 (7/75)</td>
<td>30.3 (23/76)</td>
<td>14.7 (10/68)</td>
</tr>
<tr>
<td>Kagoshima</td>
<td>70.7 (53/75)</td>
<td>14.3 (10/70)</td>
<td>28.8 (19/66)</td>
<td>17.4 (12/69)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>63.7 (65/102)</td>
<td>8.5 (8/94)</td>
<td>21.6 (19/88)</td>
<td>12.5 (10/80)</td>
</tr>
<tr>
<td>Ainu</td>
<td>48.4 (30/62)</td>
<td>16.7 (9/54)</td>
<td>23.9 (11/46)</td>
<td>21.7 (10/46)</td>
</tr>
<tr>
<td>Atayal</td>
<td>46.2 (43/93)</td>
<td>6.0 (5/84)</td>
<td>22.0 (20/91)</td>
<td>7.1 (6/84)</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>8.1 (6/74)</td>
<td>6.0 (5/76)</td>
<td>4.2 (3/71)</td>
<td>10.1 (7/69)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Population</th>
<th>Carabelli’s tubercle (UM1) % (A/O)</th>
<th>Lingual paracone tubercle (UM1) % (A/O)</th>
<th>Protoconule (UM1) % (A/O)</th>
<th>Cusp 5 (UM1) % (A/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyako</td>
<td>4.2 (8/190)</td>
<td>62.2 (46/74)</td>
<td>34.7 (41/118)</td>
<td>37.3 (28/75)</td>
</tr>
<tr>
<td>Ishigaki</td>
<td>3.0 (4/133)</td>
<td>44.3 (35/79)</td>
<td>24.1 (27/112)</td>
<td>43.0 (37/86)</td>
</tr>
<tr>
<td>Kadena</td>
<td>3.6 (7/196)</td>
<td>76.9 (90/117)</td>
<td>23.4 (37/158)</td>
<td>45.0 (54/120)</td>
</tr>
<tr>
<td>Nakijin</td>
<td>1.6 (1/61)</td>
<td>77.8 (38/49)</td>
<td>24.1 (14/58)</td>
<td>46.8 (22/47)</td>
</tr>
<tr>
<td>Tokunoshima</td>
<td>5.8 (4/69)</td>
<td>71.0 (22/31)</td>
<td>39.6 (21/53)</td>
<td>38.9 (14/36)</td>
</tr>
<tr>
<td>Kagoshima</td>
<td>8.5 (6/71)</td>
<td>75.0 (12/16)</td>
<td>27.8 (15/54)</td>
<td>36.8 (14/38)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>4.9 (5/103)</td>
<td>73.3 (66/90)</td>
<td>35.3 (36/102)</td>
<td>40.5 (34/84)</td>
</tr>
<tr>
<td>Ainu</td>
<td>1.1 (1/89)</td>
<td>75.0 (39/52)</td>
<td>35.1 (20/57)</td>
<td>23.1 (12/52)</td>
</tr>
<tr>
<td>Atayal</td>
<td>2.3 (2/87)</td>
<td>58.2 (29/67)</td>
<td>28.0 (21/75)</td>
<td>15.7 (11/70)</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>5.0 (3/60)</td>
<td>20.6 (7/34)</td>
<td>0.0 (0/38)</td>
<td>6.8 (3/44)</td>
</tr>
</tbody>
</table>

Numbers in parentheses show the affected/observed sample number. Miyako: *p < 0.05, **p < 0.01, ***p < 0.001. Ishigaki: #p < 0.05, ##p < 0.01, ###p < 0.001.
show another pattern. The frequencies of the protostylid and cusp 6 in the Miyako and Ishigaki Islanders are comparable to those in Hokkaido Ainu and lower than those in the other three populations. On the other hand, the Miyako sample has the highest frequency of deflecting wrinkle.

Because of the small sample size for a few populations, we had to exclude frequency data of the lingual paracone tubercle, oblique ridge, protostylid, deflecting wrinkle, distal trigonid crest, and groove pattern, as in the previous study (Higa et al., 2003).

The modified MMDs were calculated using 18 non-metric dental traits for the ten populations, and the distance matrix and standard deviations are given in Table 3. The MMD between the Miyako and Ishigaki samples is only 0.002 and therefore insignificant. The next closest to Miyako and Ishigaki is the Kadena sample. The MMDs among the Kadena, Nakijin and Tokunoshima samples are small (0.002–0.024) and insignificant. Ryukyuans are generally closer to main-island Japanese and Atayal than to Hokkaido Ainu. Interestingly, the closest to Hokkaido Ainu is Ishigaki (0.0071) and the next closest is Miyako (0.0081) and Tokunoshima (0.0083). The Afghanistan sample is the most remote.

The multidimensional scaling method of the MMD matrix, listed in Table 3, was applied. The Afghanistan sample was excluded in this case because of its extreme isolation. A two-dimensional display of the first and second axes is shown in Figure 4. The first and second axes explained 76.9% and 15.4% of total variation, respectively. The Hokkaido Ainu sample is situated in the left side, which showed the outliers. The Atayal sample is also somewhat isolated in the lower right portion of the figure. Both the Kagoshima and the Tokyo samples are plotted on the right side while the Ryukyu samples, loosely connected to each other, are located between the main-island Japanese and the Hokkaido Ainu. Although the Nakijin and Kadena samples are much closer to main-island Japanese, the Ishigaki and the Miyako samples are relatively near to the Hokkaido Ainu sample.

The neighbor-joining method was applied to the MMD matrix, listed in Table 3, was applied. The Afghanistan sample was excluded in this case because of its extreme isolation. A two-dimensional display of the first and second axes is shown in Figure 4. The first and second axes explained 76.9% and 15.4% of total variation, respectively. The Hokkaido Ainu sample is situated in the left side, which showed the outliers. The Atayal sample is also somewhat isolated in the lower right portion of the figure. Both the Kagoshima and the Tokyo samples are plotted on the right side while the Ryukyu samples, loosely connected to each other, are located between the main-island Japanese and the Hokkaido Ainu. Although the Nakijin and Kadena samples are much closer to main-island Japanese, the Ishigaki and the Miyako samples are relatively near to the Hokkaido Ainu sample.

The neighbor-joining method was applied to the MMD matrix, listed in Table 3, was applied. The Afghanistan sample was excluded in this case because of its extreme isolation. A two-dimensional display of the first and second axes is shown in Figure 4. The first and second axes explained 76.9% and 15.4% of total variation, respectively. The Hokkaido Ainu sample is situated in the left side, which showed the outliers. The Atayal sample is also somewhat isolated in the lower right portion of the figure. Both the Kagoshima and the Tokyo samples are plotted on the right side while the Ryukyu samples, loosely connected to each other, are located between the main-island Japanese and the Hokkaido Ainu. Although the Nakijin and Kadena samples are much closer to main-island Japanese, the Ishigaki and the Miyako samples are relatively near to the Hokkaido Ainu sample.

The neighbor-joining method was applied to the MMD matrix, listed in Table 3, was applied. The Afghanistan sample was excluded in this case because of its extreme isolation. A two-dimensional display of the first and second axes is shown in Figure 4. The first and second axes explained 76.9% and 15.4% of total variation, respectively. The Hokkaido Ainu sample is situated in the left side, which showed the outliers. The Atayal sample is also somewhat isolated in the lower right portion of the figure. Both the Kagoshima and the Tokyo samples are plotted on the right side while the Ryukyu samples, loosely connected to each other, are located between the main-island Japanese and the Hokkaido Ainu. Although the Nakijin and Kadena samples are much closer to main-island Japanese, the Ishigaki and the Miyako samples are relatively near to the Hokkaido Ainu sample.
Figure 2. Frequency patterns of the six non-metric dental crown traits in the six samples (I).

Figure 3. Frequency patterns of the six non-metric dental crown traits in the six samples (II).

Table 3. The MMD (lower diagonal) and standard deviation (upper diagonal) matrices obtained from the 18 non-metric tooth crown traits

<table>
<thead>
<tr>
<th></th>
<th>Miyako</th>
<th>Ishigaki</th>
<th>Kadena</th>
<th>Nakijin</th>
<th>Tokunoshima</th>
<th>Kagoshima</th>
<th>Tokyo</th>
<th>Ainu</th>
<th>Atayal</th>
<th>Afghanistan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyako</td>
<td>0.006</td>
<td>0.005</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
<td>0.006</td>
<td>0.009</td>
<td>0.007</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>Ishigaki</td>
<td>0.002*</td>
<td>0.005</td>
<td>0.010</td>
<td>0.009</td>
<td>0.009</td>
<td>0.007</td>
<td>0.009</td>
<td>0.007</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>Kadena</td>
<td>0.018</td>
<td>0.030</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
<td>0.006</td>
<td>0.008</td>
<td>0.007</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>Nakijin</td>
<td>0.007*</td>
<td>0.021</td>
<td>0.002*</td>
<td>0.012</td>
<td>0.012</td>
<td>0.010</td>
<td>0.013</td>
<td>0.011</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>Tokunoshima</td>
<td>0.016</td>
<td>0.035</td>
<td>0.008*</td>
<td>0.014*</td>
<td>0.020*</td>
<td>0.011</td>
<td>0.012</td>
<td>0.010</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Kagoshima</td>
<td>0.017</td>
<td>0.039</td>
<td>0.024</td>
<td>0.004*</td>
<td>0.002*</td>
<td>0.002*</td>
<td>0.010</td>
<td>0.008</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Tokyo</td>
<td>0.023</td>
<td>0.043</td>
<td>0.005*</td>
<td>0.004*</td>
<td>0.002*</td>
<td>0.119</td>
<td>0.011</td>
<td>0.011</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Ainu</td>
<td>0.081</td>
<td>0.071</td>
<td>0.110</td>
<td>0.126</td>
<td>0.083</td>
<td>0.128</td>
<td>0.148</td>
<td>0.148</td>
<td>0.148</td>
<td>0.011</td>
</tr>
<tr>
<td>Atayal</td>
<td>0.048</td>
<td>0.082</td>
<td>0.053</td>
<td>0.047</td>
<td>0.046</td>
<td>0.030</td>
<td>0.599</td>
<td>0.819</td>
<td>0.819</td>
<td>0.819</td>
</tr>
</tbody>
</table>

* MMD is not significant at the 5% level.
distance matrix to represent an unrooted tree, as shown in Figure 5. The results are generally comparable to those of the multidimensional scaling method. The Afghanistan sample is the most remote. The samples from Kagoshima and Tokyo, and Kadena and Nakijin are connected, respectively. These four populations and the Tokunoshima samples are grouped together. The Ishigaki and Miyako samples are connected with this cluster and there is distance between the Ishigaki-Miyako and the Hokkaido Ainu populations.

Assuming that the samples used in this study have the same effective population size, inter-regional variations were estimated by F_{st} values. Table 4 shows the minimum F_{st}, using an average heritability rate $h^2 = 1$, and estimated F_{st} ($h^2 = 0.55$) for the non-metric crown traits. The results show that non-metric dental variations across regions are fairly limited. The F_{st} value of the five Ryukyu Island samples is larger than that of main-island Japanese.

Table 5 gives the results of using Relthford and Blangero’s (1990) method to estimate intra-regional variations, assuming an equal effective population size. Except for the Tokunoshima sample, four samples from the Ryukyu Island chain showed lower phenotypic variation than expected.

Figure 6 shows the multidimensional scaling of distances transformed from the R-matrix. Using the first two dimensions, 92.3% total variance is expressed. The disposition of the samples is quite similar to Figure 4, based on MMDs.

Discussion

Ryukyu people, including Miyako and Ishigaki Islanders, are more similar to main-island Japanese than to Ainu, though are situated between main-island Japanese and Ainu in terms of both MMD and R-matrix methods of non-metric dental trait analysis. This is comparable to previous dental and cranial studies (Dodo et al., 1998, 2000; Higa et al., 2003; Fukumine et al., 2006; and many others), whereas several genetic, cranial, and dental analyses, and viral infection studies, have indicated relatively close relationships between Ryukyuans and Ainu (or Jomon) (Hanihara, 1991; Matsumura 1994; Omoto and Saitou, 1997; Yamashita et al., 2001; Watanabe et al., 2004; Matsumura and Hudson, 2005). However, it is more interesting that the anthropological position of the Ryukyu people consistently lies between Ainu and main-island Japanese in apparent contradiction to their geographical relationship (Fukumine et al., 2006).

One of the most remarkable results is that, among Ryukyu peoples, Ishigaki and Miyako Islanders are relatively close

Table 4. F_{st} values of Ryukyu and neighboring populations (inter-regional variation)

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>SE</th>
<th>Estimated</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main-island Japanese samples</td>
<td>0.0066</td>
<td>0.0022</td>
<td>0.0120</td>
<td>0.0021</td>
</tr>
<tr>
<td>Ryukyu Island samples</td>
<td>0.0151</td>
<td>0.0020</td>
<td>0.0271</td>
<td>0.0019</td>
</tr>
<tr>
<td>Japanese Archipelago samples</td>
<td>0.0279</td>
<td>0.0022</td>
<td>0.0495</td>
<td>0.0022</td>
</tr>
<tr>
<td>East Asian samples</td>
<td>0.0309</td>
<td>0.0022</td>
<td>0.0547</td>
<td>0.0021</td>
</tr>
<tr>
<td>All samples</td>
<td>0.0996</td>
<td>0.0034</td>
<td>0.1628</td>
<td>0.0030</td>
</tr>
</tbody>
</table>

Average heritability of the nonmetric dental traits $= 0.55$.

* Tokyo and Kagoshima.
** Miyako, Ishigaki, Kadena, Nakijin, and Tokunoshima.
*** Ryukyu Islands, main-island Japanese, and Ainu.
**** Japanese archipelago and Atayal.
Islanders are farther from Jomon and Ainu people than Okinawan. Non-metric cranial studies have showed that Sakishima junior high school pupils and eliminated some significant particular. In this study, we used samples from present-day Kagoshima, based on metric and non-metric dental traits in and to the Hirota Yayoi sample from Tanegashima Island, ple of about 200 years ago were closely related to Jomon, Hanihara (1991) showed that early Modern Sakishima people may be similar to the main-island Japanese samples. On the other hand, metric and non-metric cranial analyses of Sakishima samples showed inconsistent results. Some non-metric cranial studies have showed that Sakishima Islanders are farther from Jomon and Ainu people than Okinawa main islanders (Dodo et al., 1998; Fukumine et al., 2006), while Mouri (1986) reported the reverse relationship, probably because of differences in the non-metric traits used. The Sakishima samples were slightly closer to Jomon and Ainu than Okinawa through cranial and facial metric analyses (Pietrusewsky, 1999, 2004; Dodo et al., 2000; Dodo, 2000).

Several human genetic studies on Sakishima Islanders have been performed over the last 40 years (Nakajima et al., 1967; Omoto et al., 1973, 1975; Omoto, 1978; Ago et al., 1998a, b). Omoto (1978) reported that Okinawans are relatively close to main island Japanese, while the Yaeyama populations of Ishigaki and Iriomote Islands have close affinity to Taiwan Chinese on the basis of 15 polymorphic loci. Ago et al. (1998a, b) pointed out some geographical clines of transferrin and group-specific component/vitamin-D binding protein allele frequencies in southwest Japan and the Ryukyu Island chain and the peculiarity of the Sakishima Islands, Miyako in particular; however, the genetic relationship to Ainu has been little discussed.

Prehistoric Sakishima was located beyond the Jomon culture, as mentioned above (Ikeda, 2005). Turner (1987, 1990), and Scott and Turner (1997), have reported that the morphology of East Asian dentition shows a clinal variation or dichotomy, such as the sundadonty of Southeast Asians and Jomon-Ainu, and the sinodonty of East and Northeast Asians. Ryukyuans, dentition, however, was classified either as sundadonty (Matsumura and Hudson, 2005) or sinodonty (Manabe et al., 1999). This inconsistency suggests that the border of the dichotomy is unclear, because each morphological trait has only clinal variation (Hanihara and Ishida, 2001a, b, c, d, e; Higa et al., 2003). This clinal variation of several dental traits, including double-shoveling, of Sakishima Islanders may result in some affinity between Sakishima Islanders and Hokkaido Ainu because of the more southern location of Sakishima.

In order to clarify if Sakishima people, including Miyako and Ishigaki Islanders, are closer to Ainu than Okinawa Islanders, we will intensively recover prehistoric and historic human skeletal remains from Sakishima and investigate that population via more elaborate genetic analysis.

The estimated Fst and the results of Relethford and Blangero’s (1990) method on the basis of non-metric dental traits highlighted some significant aspects of Ryukyu diversity.

The estimated Fst displayed low levels of inter-regional variation of non-metric dental traits in this study. These findings are more or less consistent with the continued finding of low levels of inter-regional variation reported in studies that used genetic, craniometric and odontometric data (Lewontin, 1972; Latter, 1980; Nei and Roychoudhury, 1982; Ryman et al., 1983; Excoffier et al., 1992; Dean et al., 1994; Barbujani et al., 1997; Seielstad et al., 1998; Jorde et al., 1994; Barbujani et al., 1997; Seielstad et al., 1998; Jorde et al., 2000; Brown and Armelagos, 2001; Relethford, 2002; Hanihara and Ishida, 2005), whereas skin color showed very high variation among regions, suggesting a natural selection pattern (Relethford, 2002). These results of Fst suggest that non-metric dental variation, when considered as a whole, varies across regions in a manner matching neutral expectations (Relethford and Blangero, 1990). At the very least, inter-regionally differing selection pressures have played a limited role in producing overall patterns of dental diversity.

Some metric and non-metric cranial analyses have shown relative homogeneity in Ryukyuans (Dodo et al., 1998; Pietrusewsky, 1999, 2004), while other cranial and dental analyses resulted in the heterogeneity of the Amami Islands or Sakishima from Okinawa Island (Tagaya and Ikeda, 1976; Mouri, 1986; Hanihara, 1991; Dodo et al., 2000; Higa et al., 2003). Okinawan genetic diversity is comparable to that of main-island Japanese (Hammer and Horai, 1995; Horai et

| Table 5. Intraregional variation of the eight populations in the Japanese archipelago |
|----------------|-----------|----------|----------|-----------|
| Miyako | 0.2457 | 0.2541 | -0.0084 | 0.0714 |
| Ishigaki | 0.2377 | 0.2521 | -0.0144 | 0.0811 |
| Kadena | 0.2478 | 0.2536 | -0.0057 | 0.0683 |
| Nakijin | 0.2432 | 0.2522 | -0.0090 | 0.0670 |
| Tokunoshima | 0.2552 | 0.2520 | 0.0032 | 0.0633 |
| Kagoshima | 0.2514 | 0.2447 | 0.0067 | 0.0645 |
| Tokyo | 0.2535 | 0.2522 | 0.0012 | 0.0602 |
| Ainu | 0.2729 | 0.2331 | 0.0399 | 0.0926 |

Figure 6. A scattergram of the nine populations, excluding the Afghanistan sample, based on the eigenvectors of the R matrix.
al., 1996), although genetic diversity throughout the whole Ryukyu Island chain has not yet been reported. The estimated Fst is larger in Ryukyu people, including Sakishima samples, than in the main-island Japanese in this study. This relatively large diversity suggests the isolation or poor contact between each island throughout history in Ryukyu Islanders.

Next, Relethford and Blangero’s (1990) method resulted in four samples from the Ryukyu Island chain showing lesser observed variation than expected, except forTokunoshima. This indicates that the effective population size in Ryukyu Island chain was less than in mainland Japan. In other words, the results may reflect larger genetic drift in the Ryukyu Island chain. As the Sakishima Islands had been isolated from the Jomon and Yayoi culture in particular (Ikeda, 2005), this suggestion may not be far from the mark.

Acknowledgments
We wish to thank the principals, N. Tomari, H. Matsubara, T. Sadoyama, and school nurse, T. Sakiyama, the many teachers, pupils and their parents for offering us the chance to collect dental plaster casts in Miyako and Ishigaki. We are also grateful to dentists, M. Ueshiro, T. Ueta, and I. Sunakawa for their cooperation in collecting the dental plaster casts in their dental offices.

This study was supported in part by a Grant-in-aid for Scientific Research (Nos. 14540659, 17202025) from the Japan Society for the Promotion of Science.

References
Harihara T. and Ishida H. (2001d) Frequency variations of discrete
cranial traits in major human populations. III Hyperstotic vations. Journal of Anatomy, 199: 251–272
Hawks J.L. and Perry M.C. (1856) Narrative of the expedition of an American squadron to the China seas and Japan: performed in the years 1852, 1853, and 1854, under the command of Commodore M.C. Perry, United States Navy, by order of the Government of the United States. The Congress of the United States, Washington DC.

Erratum:
Page 39, right column, lines 1, 2, and 3.
Now the listed numbers are:
0.00071, 0.00081, and 0.00083.
These should be:
0.0071, 0.0081, and 0.0083.