Sparassidae in China. 1. Revised list of known species with new transfers, new synonymies and type designations
(Arachnida: Araneae)

Peter Jäger¹ & Chang-Min Yin²

¹ Institut für Zoologie, Johannes Gutenberg-Universität, Saarstraße 22, 55099 Mainz, Germany
E-mail: jaegp000@mail.uni-mainz.de ² Department of Zoology, Life Science College, Hunan Normal University, Changsha, Hunan, P.R.China 410081
E-mail: yincm@mail.hunnu.edu.cn

Abstract — This paper starts a revisional study of Chinese Sparassidae. A total of three subfamilies, eight genera and 53 species is known so far from China. Detailed data on type material of each species with references and known distribution are given. Following species are transferred to other genera: Olios menghaiensis (Wang 1990) COMB. NOV. (from Heteropoda), Olios nanningensis (Hu & Ru 1988) COMB. NOV. (from Micrommata), Olios tiantongensis (Zhang & Kim 1996) COMB. NOV. (from Heteropoda), Pseudopoda bibulba (Xu & Yin 2000) COMB. NOV. (from Heteropoda), Pseudopoda marsupia (Wang 1991) COMB. NOV. (from Sinopoda), Sinopoda dayong (Bao, Yin & Yan 2000) COMB. NOV. (from Heteropoda), and Sinopoda himalayica (Hu & Li 1987) COMB. NOV. (from Heteropoda). Following synonyms are recognized: Heteropoda guangdongensis Yin, Yan & Kim 2000 = Olios nanningensis (Hu & Ru 1988) SYN. NOV., Micrommata hainanensis He & Hu 2000 = Olios nanningensis (Hu & Ru 1988) SYN. NOV., Heteropoda shimen Yin, Peng, Yan & Bao 2000 = Heteropoda venatoria (Linnaeus 1767) SYN. NOV., Thelcticopis jiulongensis Zhang & Kim 1996 = Thelcticopis severa (L. Koch 1875) SYN. NOV. Syntypes, lectotypes and paralectotypes of the following species are designated: Pseudopoda exiguoides (Song & Zhu 1999), Sinopoda pungi Song & Zhu 1999, Sinopoda wangi Song & Zhu 1999. Heteropoda zhangi Song & Zhu 1999 is a nomen nudum.

Key words — Araneae, Sparassidae, China, check list, new synonymies, new transfers

Introduction

Sparassidae are mainly known as large hunting spiders, living on tree bark, in shrub leaves, rock crevices or in synanthropic habitats (e.g., Heteropoda venatoria, which inhabits in China mainly indoor places as kitchens and living-rooms, where cockroaches are present). During examining and collecting sparassids in China, it has become clear that at least several smaller species inhabit also the leaf-litter, epigeic habitats under stones and in gravelbanks. They occur as well in natural habitats as forests and riversides as in human-influenced sites like tea- and rice-fields or orchards. To state, whether they play an important ecological role in agricultural fields, further taxonomical and ecological investigations are necessary.

The senior author has recognized many undescribed species of Sparassidae in Chinese collections. Before describing them, it was necessary to take nomenclatorial and taxonomical concerns in order. Thus, the present list may serve as a basis for future research.

Entries in the list have the following structure: known sexes, valid name (in bold), original reference, data of type material (including text of labels), consequent references, known distribution. New synonymies, new transfers and type designations are marked in bold. If necessary or advisable notes are added. Subfamilies and genera within subfamilies are listed alphabetically.

Abbreviations used: PJ, consecutive number of Sparassidae examined by Peter Jäger; # denotes number of each collection. Collections: AMNH, American Museum of Natural History New York; BSUJ, Biological Department of Shandong University Jinan; HNUC, Hunan Normal University Changsha; IOZB, Institute of Zoology, Chinese Academy of Sciences, Beijing; MNHN, Museum National d’Histoire Naturelle
Systematics

First investigations on Chinese sparassids were undertaken by Fox (1936, 1937, 1938) and Schenkel (1936, 1953, 1963). The species described by both arachnologists amount together to eight species. Zhu (1983) published a revised list with 14 species and three subspecies (of Heteropoda venatoria). In the following years several species were described by Chinese arachnologists. In the compilation on Chinese spiders of Song et al. (1999) a total of 39 species were listed in Sparassidae.

Family Sparassidae Bertkau 1872

Representatives of the family Sparassidae are recognizable by the laterigrade legs, the scopulae at tarsus and metatarsus and by an apomorphic character, a soft trilobate membrane situated dorsally at the distal end of metatarsus. For discussion on family name see Jäger (1999a). The name “Sparassidae” was recently included in the list of spider families by Platnick (2000a, 2000b). At present, three subfamilies can be distinguished in China, which may be recognized by the following characters (compare drawings in Jäger 1998, 2001):

Heteropodinae Thorell 1873: chelicerae with field of small teeth (= denticles) between three anterior and four posterior teeth, in some species denticles very tiny. Female palpal claw with long and curved teeth. Both eye rows recurved with lateral eyes being larger than median eyes. Lateral projections and median hook of trilobate membrane about the same length. Included genera (with known distribution in China): Heteropoda Latreille 1804 (Anhui, Guangxi, Hainan, Hongkong, Hunan, Hubei, Jiangxi, Sichuan, Taiwan, Xizang/Tibet, Yunnan, Zhejiang),

Sparassinae Bertkau 1872: chelicerae with two anterior and four to six posterior teeth. Median hook of trilobate membrane longer than lateral projections. Included genera (with known distribution in China): Micrommata Lateille 1804 (Heilongjiang, Xinjiang Uygur),

Sparianthinae Simon 1897: cheliceral posterior teeth distinctly smaller than anterior teeth. Leg claws massive (not slender as in other subfamilies). Lateral projections of trilobate membrane extending beyond median hook. Included genera (with known distribution in China): Theleticopis Karsch 1884 (Guangxi, Hainan, Hongkong, Hunan, Taiwan, Yunnan, Zhejiang).

At present the genus Eusparassus Simon 1903 cannot be associated with any known subfamily. Representatives can be recognized by their genitalia (see references in the check list). Species are known from Xinjiang Uygur Region.

Notes: One specimen from the collection in Beijing (IOZB, Chinese Academy of Sciences) without locality is known, which belongs to the genus Gnathopalystes Rainbow 1899. This genus cannot be associated with any known subfamily at present. It is characterized by a denticle field in the cheliceral furrow, which extends from the proximal teeth to the distal membrane, from which the cheliceral claw arises. This genus may occur in the very southern parts of China (e.g. Xishuangbanna, Yunnan Prov.). Since specimens with confirmed collecting data are unavailable, this genus is not included in the check list.

Subfamily Heteropodinae Thorell 1873

Genus Heteropoda Latreille 1804

Representatives may be recognized by the sheath-like conductor of male palps and the typical spiral windings of female copulatory ducts.

♀ Heteropoda amphora Fox 1936: 125, fig. 1 (1♀ holotype, PJ 1270, label:♀ holotype, #1152, 10, A-83, Heteropoda amphora I. Fox, betw. Suifu +
Revised list of Chinese Sparassidae

Song et al. (1999) suggested that this species could be the female to Pseudopoda virgata (sub Heteropoda v.). Both types were examined by the first author and it has become clear that both species are not congeneric.

Heteropoda? aureola He & Hu 2000b: 17, f. 1–2 (1 \uparrow holotype, Jiangfengling Natural Reserve {18°24’N, 108°48’E}, Dongle County, Hainan Province, April 8, 1980, coll. by S.L. Liu) TNHM, not examined. Original illustrations do not allow a statement on the definite generic position. Type material has to be examined.

Heteropoda chengbuensis Wang 1990: 9, 11, figs. 15–16 (1 \uparrow holotype, Chengbu County, 110°18’E, 26°20’N, Hunan Prov., 5.8.1983, Wang) types are not in HNUC; whereabouts unknown. Song et al. 1999: 467, fig. 268 E. China: Hunan (Chengbu).

Heteropoda gyirongensis Hu & Li 1987: 365, 389, figs. 34 (1–2) (1 \uparrow holotype, Chengbu County, 110°18’E, 26°20’N, Hunan Prov., 26.5.1984, leg. by Z.X. Yan & Q. Q. Pu) BSUJ, not examined. According to the original illustrations this species may be a synonym of H. venatoria. Examination of type material is necessary to clear the status of this species.

Heteropoda hainanensis Li 1991: 366, 369, figs. 1–4 (1 \uparrow holotype, label: Linshui County, Hainan Prov., 17.4.1990, leg. Li Aihua) PPSG, not examined. According to the original illustrations this species may be a synonym of H. venatoria. Examination of type material is necessary to clear the status of this species.

Heteropoda jiangxiensis Li 1991: 367, 369, figs. 5–6 (1 \uparrow holotype, label: Yifeng County, Jiangxi Province, 8.7.1989, Li & Hu leg.) PPSG, not examined. The drawings of the original description do not allow a statement on the generic position. Type material has to be examined.

Heteropoda nyalamus Hu & Li 1987: 369, 390, figs. 36 (1–4), 37 (1–2) (1 \uparrow holotype, 1 \uparrow paratype, 2 \uparrow \uparrow paratypes, label: Xizang, Zhangmu Kouan, 2250 m, 5. 1984, leg. by A.H. Li; 2 \uparrow \uparrow paratypes, label: Xizang, Jilong County, 2800m, 17.5.1984, leg. by Z.X. Yan & Q.Q. Pu) BSUJ, not examined. Heteropoda nyalamus– Song et al. 1999: 468. Hu 2001: 310, fig. 8–182. China: Xizang/Tibet (Zhangmu Kouan, Jilong).

Heteropoda squamacea Wang 1990: 7, 11, figs. 6–8 [non \uparrow paratype, non figs. 9–10!] (1 \uparrow holotype, #45, label: Yuanying County, Yunnan Prov., China, 8.3.1979, by Wang Jia-fu. 1 \uparrow, 1 immature paratypes, #44, label: Mengyang County, Yunnan Prov., China, 10.3.1979, by Wang Jia-fu) HNUC, examined. Song et al. 1999: 468, fig. 268 R (non \uparrow, non fig. 269 A!). China: Yunnan.

Female paratype (HNUC #45) belongs to Heteropoda venatoria (see notes on variability of genitals in “H. venatoria”). The female epigyne of this species is similar to that of H. venatoria. For the species determination an examination of female vulva is necessary.

This species has the widest distribution of all the species of Sparassidae: it occurs in all tropical countries and also in synanthropic habitats in regions with colder climates. The first author examined specimens of this species from all over the world and found a high variation especially in female genital structures (compare also Jäger & Ono 2000). This variation may be the reason, why it has caused several misidentifications. Examination of original material showed that the female specimen, which was considered by Peng et al. (1996) conspecific with H. m inschana Schenkel 1936 and which was described by Song & Zhu (1999) as female of Sinopoda pengi Song & Zhu 1999, belongs to H. venatoria (see also note in "Sinopoda pengi").

Genus Pseudopoda Jäger 2000

Males of Pseudopoda may be recognized by their flattened embolus and their membranous conductor. Filiform emboli and sheath-like conductors may appear in few species. These characters are considered a secondary development within this genus. Females possess lateral lobes, which extend beyond the epigastric furrow and run further dorsally of the septum. Pseudopoda species are mostly small to medium-sized spiders. The color varies from pale yellow to red-brown. Distinct patterns are present in nearly all species, especially in those with brighter coloration. For further description see Jäger (2000b).

† Pseudopoda bibulba (Xu & Yin 2000) COMB. NOV. Heteropoda bibulba Xu & Yin 2000: 37, figs. 1–3 (1♀ holotype, #40, label: National village, Kunming City, Yunnan Prov., China, 30.6.1999, by Xu Xiang) HNUC, examined. China: Yunnan (Kunming)

This species belongs clearly to the genus Pseudopoda, which may be recognized by the shape of external and internal genital characters.

As several Pseudopoda species have very similar genital characters (esp. ‡‡) and a small distribution range, it has to be proved, whether a male described by the above cited authors is conspecific to the female holotype of P. grahami.

Acta Arachnologica, 50(2), December 2001 ©Arachnological Society of Japan
Revised list of Chinese Sparassidae

China: Yunnan (Yangping).

Examination of type material showed that male holotype and female paratype are not congeneric. Female paratype belongs to a Sinopoda sp., which has yet to be determined. Male holotype belongs clearly to Pseudopoda and within Pseudopoda to a species group (together with P. serrata), which is characterized by a short embolus (Jäger & Ono 2001).

* Pseudopoda recta Jäger & Ono 2001: 25, figs. 17–22 (1♀ holotype, PJ 1463, label: Yunhai, NW of Mt. Nengkao, Nant’ou Hsien, Taiwan, 24-X-’89, H. Ono leg., #4546). NSMT, examined. Taiwan.

See note in Heteropoda amphora.

The external female genitalia are on a first view similar to those of Heteropoda venatoria. But the shape of the spermathecae and other internal structures point clearly to congenerity with Pseudopoda.

From the illustrations of the male and female genitalia and the altitude of the locations this species belongs also clearly to the genus Pseudopoda. It belongs not to P. virgata, but to another, probably undescribed Pseudopoda species.
Genus Sinopoda Jäger 1999

Male Sinopoda species are characterized by the distally divided, s-shaped embolus and the typical shape of the two-branched tibial apophysis. Females can be recognized by the characteristic rims of the epigyne and the special shape of the fused vulva. For further description see Jäger (1999b).

Notes: Song et al. (1999) used the genus name “Sinopoda Jäger 1998”. The concerning paper of Jäger was in fact published in 1999, so the year of description has to be changed. Following the rules of the International Code for Zoological Nomenclature (ICZN 1999) Sinopoda sensu Song et al. (1999) is not available as a genus name and therefore a nomen nudum, as no indication of any type species is made (Art. 13). Song et al. (1999) also made some new combinations without indication.

One female of the type series (HNUC, #48A) is definitely not conspecific with the holotype or other female paratypes.

This species belongs clearly to the genus Sinopoda. This is recognizable by means of the female genitalia, although they represent an extreme type of Sinopoda-genitalia, as the lateral lobes of the epigyne are reduced.

This species was described from Japan. Until now, no Chinese specimens, examined by the first author, could be determined as S. forcipata. Yunnan and Sichuan as probable locations (Fox 1937, Song et al. 1999) are unlikely considering the known distribution of this species. As it has been found in Iriomotejima (Japan; Jäger & Ono 2000), Taiwan as a possible location seems to be the most likely of the three regions mentioned in Song et al. (1999).

As some Sinopoda species have similar genital characters, it has to be proved, whether the female described and illustrated by the above cited authors is conspecific to male holotype of S. hamata.

♀ Sinopoda? himalayica (Hu & Li 1987) COMB. NOV. Heteropoda himalayicus Hu & Li 1987: 367, 390, figs. 35 (1–2) (1♀ holotype, label: Xizang, Langxian, 3050 m, 20.6.1984, leg. by Qusang &

It is not clear, whether this species belongs to Sinopoda. As some characters (s-shaped embolus, two-branched tibial apophysis) correspond with characters of other Sinopoda spp., it is placed provisionally in this genus.

Wen & Zhu (1980) and Hu (1984) described males of S. licenti. Since the types of S. licenti could not located yet, the question of conspecificity of the males with holotype female remains open.

This species was originally described based on the material from southern Gansu. It is also reported from Korea and Japan. As no type material has been found in the collections in which material described by Schenkel was used to be deposited, no statements about the real distribution range can be made. According to the illustrations, the specimens illustrated by Mao & Zhu (1983: 161, figs. a-e, Henan) and cited by Song et al. (1999: 469[part.]) are not conspecific with S. stellata.

HNUC, examined. China: Jiangxi (Mt. Lu).

Wang (1991: 5) determined 8 female and 15 males (collected 15.6.1987) as *Heteropoda hamata*. From these specimens Song & Zhu (in Song et al. 1999) described the new species *S. wangi*. Although one male is surplus in comparison with publication data and collecting dates are different, all these specimens are conspecific and considered syntypes of *S. wangi*.

The generic name *Sinopoda* became available only later (Jäger 1999), not in 1998 as indicated in Song et al. (1999). The species name ‘wangi’ is available, though it was published in combination with an unavailable genus name (ICZN 1999: Art. 11.9.3.1).

Subfamily Sparassinae Bertkau 1872

Genus *Micrommata* Latreille 1804

This unique genus is easily recognizable by its green color (male with additional distinct red stripe on opisthosoma) and its genitalia.

Although types are presumably lost, this species is well recognizable by comparing material from Sweden (type locality) and other European countries. Characters are illustrated in Jäger & Ono (2000) and Jäger (2000a). Description and list of synonyms are given in Jäger (1999a).

Genus *Olios* Walckenaer 1837

This largest genus of the family contains species with various sizes and colorations as well as genital character sets. It is in need of a worldwide revision, before taxonomical or systematical statements on species are possible.

Olios menghaiensis (Wang & Zhang 1990)

COMB. NOV. *Heteropoda menghaiensis* Wang & Zhang 1990: 91, 92, figs. 1–3 (1 holotype, Menghai County {22°00'N, 100°47'E}, Yunnan Province, 8.1983, leg. by Zhang Zhenkun) YNUK, not examined. China: Yunnan (Menghai).

This species was not listed in Song et al. (1999). Figures in the original description of Wang & Zhang (1990) resembles specimens in collections of European museums determined as *Olios punctipes* Simon 1884 or *O. impudicus* (Thorell 1887). Examination of type material should clear its taxonomical status.

Olios nanningensis (Hu & Ru 1988)

Olios nanningensis has a wide distribution range in contrast to many *Sinopoda* or *Pseudopoda* species. Misidentifications may be explained by the variable vulval structures. Membranous parts of the vulva are
flexible and show different shapes, when they are filled with sperm mass or not. Males and their genital characters should be used for correct identification.

$\texttt{Olios sculptor} \text{ Jäger & Ono 2001: 28, figs. 26–28 (1 holotype, PJ 1468, label: Kenting, 200–300 m alt., Pintung Hsien, Taiwan, 12-VII-1977, Hajime Yoshida leg., #4557). NSMT, examined. Taiwan.}$

$\texttt{Olios tiantongensis} \text{ (Zhang & Kim 1996) COMB. NOV. Heteropoda tiantongensi Zhang & Kim 1996: 77, figs. 1–5 (lapsus pro tiantongensis; 1 holotype, #39, label: Tiantong, Ningbo City {29.9°N, 121.5°E}, Zhejiang Province, China, 20.11.1994, leg. by Zhang Yong-jin.) HNUC, examined. Heteropoda tiantongensis,– Song et al. 1999: 468, fig. 269 B. China: Zhejiang (Ningbo, Tiantong).}$

This species belongs clearly to the subfamily Sparassinae. Although no related Olios species or a species with similar genital characters is known, it is placed here tentatively in this genus because of similarity of somatical characters.

Platnick (2000a) places this species under Theleticopis, as Song et al. (1999) provided no explanation for generic placement. After examination of the type material it is clear that this species belongs to the genus Olios. Two of the female paratypes (#49) show a high variability, in one specimen the epigyne is missing (instead of the missing epigyne a prepared epigyne of a Sinopoda sp. is present). More material is needed to clear, whether paratypes are conspecific with the holotype.

Subfamily Sparianthinae Simon 1897

Genus Sagella Strand 1942

Notes: The genus name Sagella (proposed by Dönitz & Strand 1906) was preoccupied by Paetel in 1889. Strand replaced Sagella by the new name Sagellula in 1942. Only the type species of this genus was known so far: S. octomunita (Bösenberg & Strand 1906), described from Japan. It has never caught since its first description. Thus its systematic position remains unclear.

From the original description (especially from the illustrations of the genitalia) it is doubted that this species belongs to the Sparianthinae or even to the Sparassidae. The high altitude of the type locality points also against an affiliation with the Sparassidae. Only Pseudopoda spp. are known so far from such high altitudes (3800 m). The cheliceral dentition (three anterior and two smaller posterior teeth) of the new species could theoretically occur in Sparianthinae, but only African or American representatives of this subfamily are known to have only two posterior teeth.

Genus Theleticopis Karsch 1884

Species of this genus are quite large and show a distinct pattern on opisthosoma. Statements on genitalia as generic diagnostic characters are not possible until a revision will be done.

$\texttt{Theleticopis severa} \text{ (L. Koch 1875). Themeropis severa} \text{ L. Koch 1875: 699, pl. 60, fig. 1 (1 holotype, China) type material not in University Tübingen, presumably destroyed in the second world war. Theleticopis sp.? Sherriffs 1938: 183, fig. 4 (1, 1 imm., Hongkong, Repulse Bay, ZMUC #88, 1 imm., Hongkong, ZMUC #98, all examined). Theleticopis severa,– Hu & Ru 1988: 93, 96, figs. 1–5 [non sub Heteropoda as stated in Song et al. 1999: 469]. Murphy & Murphy 2000: 186, Fam. 31: fig. 8. Theleticopis severa,– Zhang & Kim 1996: 80, figs. 16–21 (lapsus pro Theleticopis s.). Theleticopis jiuulongensis Zhang & Kim 1996: 79, figs. 10–15 (lapsus pro Theleticopis j.; 1 holotype, #37, label: Mt. Jiu long, Suichang County {28.6°N, 119.3°E},
T. jiulongensis is clearly a junior synonym of T. severa. Differences figured in the original description of T. jiulongensis lie within intraspecific variation of the widespread T. severa (internal characters, vulva) or are caused by inaccurate drawings (external characters, epigyne). Chikuni (1989: 131, fig. 5, *) illustrated obviously an epigyne of a subadult female of T. severa. This drawing should not be used as a reference (e.g. Song et al. 1999: 470).

Genus incertae sedis

Eusparassus Simon 1903

Representatives of this genus are distributed in dry habitats from Africa and the mediterranean region to those parts of China, which are situated north of the Himalayan chain (Xinjiang). Species show characters as well from the subfamily Heteropodinae (eye position in some species, denticles) as from the Sparassinae (eye position in some species, genital characters, number of anterior teeth). Its systematic position remains unclear. Uniformity of genital organs within the genus strikes considering the wide distribution range compared to other taxa.

Eusparassus potanini Simon 1895. Sparassus potanini Simon 1895: 340 (1♀ holotype, Nan-Shan-Kou, au pied merid. du Tjan Shan, 10.6.1877) not found in MNHN, whereabouts unknown. Song et al. 1999: 467 (spec. inquir.). Eusparassus potanini, Reimoser 1919: 200. China: Xinjiang (Altunshan Mts.). From the original description generic position remains unsolved. As Simon (1895) compared his new species with other Eusparassus spp., it is placed here provisionally in Eusparassus. Collecting data points also to congenerity with Eusparassus. Examination of original material is necessary to make final statements on taxonomical status of this species.

Nomen nudum

Heteropoda zhangi Song & Zhu 1999 (in Song et al. 1999): 468, fig. 269 E, J (Song & Zhu added no diagnostic characters)

Acknowledgments

The first author wishes to thank the vice-president of the Hunan Normal University, Changsha, Prof. Dr. Liang Songping and the vice-dean of the Institute of Biology, Changsha, Prof. Dr. Cheng Liangbi for arranging the visit in the Department of Zoology. Also, kind help and advice of the scientific staff (Ms. Bao You-hui, Ms. Xu Xiang, Dr. Peng Xianjin and Mr. Tang Guo, all HNUC) during the stay of the first author in Changsha is greatly appreciated. This paper resulted from a research travel of the first author to Beijing (Institute of Zoology, CAS) and Changsha (Hunan Normal University). This travel was partly sponsored by a travel grant of the Deutscher Akademischer Austauschdienst (DAAD, Germany) and by the Chinese National Science Foundation. The first author wish also to thank Dr. Li Shuqiang (IOZB) for his helpful efforts in Beijing, which made the stay most convenient and enabled the greatest possible result for this research. Thanks are due to Prof. Dr. Norman Platnick (New York), who was always available for

Acta Arachnologica, 50(2), December 2001 ©Arachnological Society of Japan
taxonomical or nomenclatorial questions and requests for literature. Thanks also to Theo Blick (Hummeltal), Dr. Martin Kreuels (Muenster) and Dr. John Murphy (Hampton) for making important literature available. Research travels to Copenhagen and Paris were supported by European Community (Access to Research Infrastructure action of the Improving Human Potential Programme). Co-operational help of curators of mentioned museums are gratefully acknowledged.

References

Linnaeus, C. 1767. Systema naturae per regna tria naturae, secundum classes, ordines genera, species cum characteribus, differentiis, synonymis, locis, Tomus I. Editio duodecima, reformata. Laurentii Salvii, Holmiae.

Revised list of Chinese Sparassidae

Acta Arachnologica, 50(2), December 2001 ©Arachnological Society of Japan
Schenkel (Gnaphosidae) and the male of *Heteropoda stellata* Schenkel (Heteropodidae)]. J. Bethune med. Univ., 9 (Suppl.): 161–163. (In Chinese)

Murphy, F. & Murphy, J. 2000. An introduction to the spiders of South East Asia. With notes on all the genera. United Selangor Press, Kuala Lumpur (Malaysia), 625 pp., 32 pl.

Received March 19, 2001/Accepted July 31, 2001

Added in proof:

The specific epithet in the original description and the type locality contain an apostrophe. As diacritic marks cannot be included in scientific names (ICZN 1999: Art. 27), the scientific spelling must be *chongan*.

References

タニマノドヨウグモの放置網に侵入する造巣性クモ類の侵入頻度の季節的変化（pp. 117–122）
吉田 真（〒525-8577 滋賀県草津市野路東 1-1 立命館大学理工学部生物工学科）

クモ網への造巣性クモ類の侵入に関与する諸要因を明らかにするために、タニマノドヨウグモが放置した網へ侵入する造巣性クモ類の頻度の季節的変化を調べた。関与する要因として、ホスト網のサイズと密度、侵入種の生活史と密度が調べられた。侵入者はおもに、タニマノドヨウグモの仔クモとさまざまなサイズのアシナガガモであった。網あたりの侵入者数の平均は、侵入種の密度が低くホスト網の密度が高いに、4月から6月までは低かった。これに対して7月から9月上旬にかけては、侵入者は非常に多くかった。これは、ホスト網の密度が低いこと、7月に生まれたタニマノドヨウグモの仔クモの出現によると思われる。このように、侵入頻度は一義的には、ホスト網の密度と侵入種の密度に依存していると思われる。

中国のアシダガモ科 I. 新シンニコムと転属、タイプ指定つき、既知種のリスト（pp. 123–134）
Peter Jäger1, Chang-Min Yin2(1Institut für Zoologie, Johannes Gutenberg-Universität, Germany; 2Hunan Normal University, P. R. China)

アシダガモ、次の種のシンタイプ、レクトタイプ、パラレクトタイプを指定した：Pseudopoda exiguoides (Song & Zhu 1999), Sinopoda pengi Song & Zhu 1999, Sinopoda wangi Song & Zhu 1999、またHeteropoda zhangi Song & Zhu 1999は無効学名である。（和訳：編集委員会）

旧北区東部からのおメキシコ多属（ワシゴモ科）の1新種と他の数種の新記録（pp. 135–144）
Yuri M. Marusik1 & Seppo Koponen2(1IBPN RAS, Russia; 2Zoological Museum, University of Turku, Finland)

全北区系のクモの1属 Procerocymbium Eskov 1989（サラダゴモ科）の改訂（pp. 145–156）
Yuri M. Marusik1 & Seppo Koponen2 (1IBPN RAS, Russia; 2Zoological Museum, University of Turku, Finland)

サラダゴモ科 Procerocymbium Eskov 1989 とその基準種 P. sibiricum Eskov 1989 を再記載し、3新種 P. Jeniseicum（中部シベリア）、P. Buryaticum（トランスバイカルと南ヤクチア）、P. dondalei（ユーロン地方）を記載した。本属の他者の属との関係についても論議した。（和訳：編集委員会）

日本産ヒメゴモ亜科（クモ目：ヒメゴモ科）の属および種の検討（pp. 157–181）
吉田 哉（〒990-2484 山形市亀田2丁目7番16号）

日本産のヒメゴモ亜科 Theridiinae Sundevall 1833 の属および種の検討をおこなった。ヒメゴモ亜科は雄触肢の杯葉内側に頭巾状の小杯葉があることが特徴で、ほとんどの属に関係がない、Monetinae Simon 1894 の