Paraesophageal hiatal hernia (PHH), accounting for only 5% of all hiatal hernias, may result in potentially life threatening complications such as obstruction, acute dilatation, perforation, or bleeding of the gastric mucosa. It is traditionally believed that PHH is an indication for surgery. The repair of paraesophageal hernia is technically challenging and controversial. The purpose of this article is to overview the current status of indication of surgery; operative techniques including hernia sac resection, esophageal lengthening procedure, crural repair, and additional antireflux procedure. Results: All symptomatic patients should be surgically treated, when operation is possible. It seems reasonable that asymptomatic or minimally symptomatic patients do not necessarily require surgery and that a more selective approach should be used. The penetration rate is not high, laparoscopic approach is currently the standard care. The hernia sac should be excised and resected circumferentially. Collis-Nissen procedure continues to be the method of choice also in the laparoscopic era, when lengthening procedure of the shortened esophagus is in consideration. Although symptomatic recurrence after suture closure of the crura is uncommon, primary repair is associated with a high rate of anatomic recurrence. Prosthetic mesh repair is reportedly associated with a recurrence rate as low as 5%, at the price of rare but serious complications such as erosion and fibrosis. Although scientific proof is lacking, fundoplication is the most common procedure to be added after crural repair.

Keywords: paraesophageal hiatal hernia, laparoscopic surgery, crural repair, Collis-Nissen procedure

Introduction

Hiatal hernia has become a common diagnosis, especially it relates to gastro-esophageal reflux disease (GERD). More than 90% of hiatal hernia is type I hernia (sliding type) where the GEJ is displaced cranial to the hiatus.1 Less commonly encountered is paraesophageal hiatal hernia (PHH) where the fundus and sometimes the whole stomach have migrated in the mediastinum alongside the esophagus (type II hernias). In type III, or mixed paraesophageal hernias, the GEJ and a large part of the stomach have migrated into the mediastinum. This type of hernia is often large, and the term of large or giant paraesophageal hernia is commonly used when more than 30% or 50% of the stomach is displaced above the diaphragm.2,3 In type IV hernias the stomach, sometimes with other viscera such as the colon or spleen, migrates in the hernia sac, which may result in an "upside-down stomach."4 Although PHH account for only 5% of all hiatal hernias,5 it may result in potentially life threatening complications such as obstruction, acute dilatation, perforation, or bleeding of the gastric mucosa (riding ulcer).6,7 It is traditionally believed that PHH is an indication for surgery. Nevertheless, patients with asymptomatic PHH are often identified by routine chest X-ray showing the
air-fluid level in the chest. It is questionable to plan surgery for all these patients. Censored observation policy is currently advocated for these asymptomatic cases. Although scientific comparison to traditional open approach is lacking, there would be no argument that laparoscopic repair is the current standard of care. The technique and approach of fixation continues to be one of the most controversial topics in the surgical literature. Most of the debate is centered around the high recurrence rate after surgery and the complication that arises from implanting mesh as a buttress for the repair. However, several surgical principles seem to have gained consensus in these studies: reduction of the stomach into the abdomen, excision of the hernia sac, evaluation of the intraabdominal esophageal length, and adequate esophageal dissection, crural closure, and antireflux procedure. The aim of this article is to review current literature and practice on these topics as they relate to hernia repair.

Indications for Surgery

The decision to surgically repair a large PHH is based on 3 factors: the patient’s overall medical status, symptomatic complaints, and the chance of incarceration and strangulation. Traditionally, elective surgical repair has been recommended for all patients with PHH considered being medically operable. Much of this recommendation is based on the classical studies such as that of Skinner et al., who in 1967 found that type II PHH carried a 29% mortality rate in asymptomatic patients due to incarceration with strangulation. Some surgeons think that PHH enlarge with time making surgery more difficult and the increasing age of the patient, which may increase the risk of complications. Furthermore, emergency repair of PHH is reportedly associated with a high mortality rate. In 1973, Hill reported a series of patients with gastric volvulus associated with PHH that had an operative mortality rate of 56%. This high mortality rate further propelled the policy to repair all PHH regardless of symptoms. In contrast, in a retrospective study by Allen et al., 23 of 147 patients were followed after refusing surgery and none of them developed a life-threatening complication from PHH. Only 4 of these 23 patients eventually developed progressive symptoms requiring an operation. This suggests that a selective approach to surgery is appropriate, with surgery reserved for symptomatic patients. Mortality rate of emergency operation for PHH may also have been overestimated. Several recent reports, including pooled analysis by Stylopoulos et al. demonstrated a much lower mortality rate (5%–17%).

In light of this information, it seems reasonable that asymptomatic or minimally symptomatic patients do not necessarily require surgery and that a more selective approach should be used. There remains little debate, however, that all symptomatic patients who are medically operable should be surgically treated.

Operative issues

Open PHH repair, done thorough the left chest or the abdomen, is based on fairly standard technique that involves reduction of the hernia, excision of the sac, repair of the hernia, and fixation of the stomach. There are no randomized studies comparing open abdominal approaches with thoracic approaches in the repair of PHH. It is also difficult to compare the studies of these approaches, because of variable clinical and radiographic follow-up and different and inconsistent outcome measures. Low et al. reported the highest rate of recurrence (18%) with the most recurrence being asymptomatic. This result likely represents a true estimates of anatomic recurrence based on the through follow-up investigations performed by the authors. Both transthoracic and transabdominal approaches reportedly have good outcomes with low postoperative mortality rates and acceptable rates of recurrence.

The first report of laparoscopic repair of PHH was published in 1992. Many reports in various hernia size and surgical technique followed. Although there is no randomized control study comparing laparoscopic surgery to open procedures, laparoscopic repair has already become a standard care. Nguyen et al. has recently published a paper, which retrospectively compared 2069 laparoscopic, and 657 open repair of PHH. For elective procedures, utilization of laparoscopic repair was 81% and was associated with a shorter hospital stay (3.7 vs. 8.3 days, \(P < 0.01 \)), less requirement for intensive care unit care (13% vs. 35%, \(P < 0.01 \)), and lower overall complications (2.7% vs. 8.4%, \(P < 0.01 \)), 30-day readmissions (1.4% vs. 3.4%, \(P < 0.01 \)) and costs ($15,227 vs. $24,263, \(P < 0.01 \)). The inhospital mortality was 0.4% for laparoscopic repair versus 0.0% for open repair. In patients presenting with obstruction or gangrene, utilization of laparoscopic repair was 57% and was similarly associated with improved outcomes compared with open repair. Within the context of academic centers, the current practice of paraesophageal hernia repair is mostly laparoscopy. Compared with open

298

repair, laparoscopic repair was associated with superior perioperative outcomes even in cases presenting with obstruction or gangrene. Rathore et al. published a meta-analysis of non-randomized series of laparoscopic PHH repair. Inclusion was restricted to those series with greater than 25 patients and follow up beyond 6 months. In 965 patients, the overall recurrence rate was 10.2%. Among those patients formally evaluated with a contrast esophagogram postoperatively, 25.5% had recurrence. Lower recurrence rates were noticed in those who underwent an esophageal lengthening procedure with a Collis Nissen gastroplasty versus those who did not (0% vs. 12%). Despite the wide adoption and good results of laparoscopic repair of PHH, a recent international survey of members of Cardio Thoracic Surgery Network revealed only 48% of members repair PHH laparoscopically, whereas 35% perform thoracotomy, and 17% perform laparotomy.33)

Hernia sac resection

In some early reports on laparoscopic paraesophageal hernia, the hernia sac was not completely removed or not removed at all, because resection of the entire sac was the most technically demanding part of the procedure. In these series, fluid collection in the posterior mediastinum was reported. Some were associated with dysphagia. Leaving the sac in place was also clearly associated with a higher rate of recurrence. Surgeons should divide and resect the sac and all of its attachment, circumferentially. By leaving a portion of the sac in place, especially if it is in continuity with the intra-abdominal peritoneum, a possible path may be left for development of a new hernia.

Esophageal shortening

Esophageal shortening has long been a major issue of controversy in the diagnosis and management of hiatal hernia. Despite having been described over 50 years, questions remain as to the existence and management of the shortened esophagus. Those who do not believe that a shortened esophagus exists claim that, in most patients, the esophagus appears shortened because the stomach is pushing it up into the chest and that if the anatomic arrangement is corrected, no lengthening procedure is needed. On the contrary, Pierre et al. reported a rate of 55% of esophageal lengthening procedure for the shortened esophagus in his series of 203 patients with PHH. The true incidence of esophageal shortening in PHH is unknown, reportedly a rate of 0% to 60%, and remain a major point of controversy (Table 1). Many of surgeons believe that although short esophagus is uncommon, it remains an important cause of recurrence after PHH repair.

The most important risk factor for esophageal shortening is the presence of periesophageal inflammation resulting from long-standing GERD. It is speculated that GERD leads to chronic irritation followed by healing and fibrosis. Fibrosis of the outer longitudinal muscle and its contraction may lead to shortening of the esophageus. Other risk factors that may predispose a patient to develop esophageal shortening include Barrett esophagus, sclerosis, and Crohn disease.

It is problematic to identify patients with shortened esophagus preoperatively. Several techniques to measure the length of the esophagus either by an endoscopy or radiologic technique have been published. Also, esophageal manometry is reportedly useful for identification. Unfortunately, none of these are completely reliable at predicting a shortened esophagus at the time of operation. The most reliable method of determining esophageal shortening is intraoperative assessment (e.g. GEJ >2.5 cm below the hiatus). When the diagnosis of short esophagus is made, a lengthening procedure of the esophagus is necessary. This may be accomplished by further intrathoracic dissection and mobilization of the esophagus or by gastroplasty. In 1957, Collis described gastroplasty for this purpose without fundoplication. Subsequently, fundoplication was added to prevent reflux and is referred to as Collis-Nissen. Collis-Nissen procedure continues to be the method of choice also in the laparoscopic era, when lengthening of the esophagus is in consideration.

Crural Repair

Closure of the hiatal gap, also termed crural repair, is one of the key steps in the repair of hiatal hernias. Cuschieri et al., in the first report of laparoscopic repair of PHH, closed the crural gap with continuous suture and fixed the fundoplication to the anterior margin of the hiatus. Currently the most common method of primary repair is continuous or interrupted sutures on the hiatus, followed by a fundoplication. While initially gratifying, it soon became evident that recurrence rate, both in the small hernia repair in anti-reflux procedures and in PHH, is unacceptably high. Soricelli et al. published a retrospective series of their experience from 1992 to 1995 with 93 patients repaired by interrupted Prolene sutures. The mean follow-up was 95.2 months, and the recurrence rate was 19%, with 91% of patient satisfaction. Targarona et al.
Mori T, et al.

published a meta-analysis in 2004, which featured 22 studies (1331 patients) of primary laparoscopic repair of PHH from the years 1997 to 2003. The range of recurrence was 0% to 40%, and the overall recurrence rate was 14%. Several mechanisms for failure have been proposed: inability to achieve a tension free repair, less than adequate closure of the crura, failure to mobilize the correct length of the esophagus, postoperative retching, the dynamic mobility of the hiatus, and lack of significant tendon reinforcement of the crura. Several mechanisms for failure have been proposed: inability to achieve a tension free repair, less than adequate closure of the crura, failure to mobilize the correct length of the esophagus, postoperative retching, the dynamic mobility of the hiatus, and lack of significant tendon reinforcement of the crura.

The use of prosthetic material to reinforce the hernia repair has been proposed either routinely or in case of large hiatal gap, in order to reduce hernia recurrence to rates well below 10%. The use of prosthetic material to reinforce the hernia repair has been proposed either routinely or in case of large hiatal gap, in order to reduce hernia recurrence to rates well below 10%

However, there are several arguments against the use of prosthesis, mainly because available literature is not of a high level of evidence regarding study design and lack of long-term functional outcomes. Most studies report on the short-term outcomes of small series of patients with a variety of hiatal hernia type (sliding hernia type I also included) and size, and variety of prosthesis material, shape, and technique of application. Furthermore, the safety of the use of the prosthesis is a matter of concern, because short- and long-term dysphagia as a result of reactive fibrosis around the esophagus, and erosion and fistulization of the foreign material to the viscera have been reported. In order to minimize these adverse effects, a variety of materials have evolved. Different mesh shapes have also been appraised with regard to dysphagia and recurrence rates.

Table 1 Outcome of selected series of laparoscopic repair of PHH

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>No of patients</th>
<th>% Lengthening gastroplasty</th>
<th>% Anatomic recurrence</th>
<th>Follow Up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trus et al.</td>
<td>1997</td>
<td>76</td>
<td>8</td>
<td>11</td>
<td>15 (median)</td>
</tr>
<tr>
<td>Wiechmann et al.</td>
<td>2001</td>
<td>60</td>
<td>0</td>
<td>7</td>
<td>40 (mean)</td>
</tr>
<tr>
<td>Matter et al.</td>
<td>2002</td>
<td>116</td>
<td>5</td>
<td>43</td>
<td>18 (median)</td>
</tr>
<tr>
<td>Pierre et al.</td>
<td>2002</td>
<td>203</td>
<td>56</td>
<td>2</td>
<td>37 (mean)</td>
</tr>
<tr>
<td>Jobe et al.</td>
<td>2002</td>
<td>52</td>
<td>0</td>
<td>32</td>
<td>37 (mean)</td>
</tr>
<tr>
<td>Diaz et al.</td>
<td>2003</td>
<td>116</td>
<td>5</td>
<td>32</td>
<td>30 (mean)</td>
</tr>
<tr>
<td>Andujar et al.</td>
<td>2004</td>
<td>166</td>
<td>0</td>
<td>5</td>
<td>15 (mean)</td>
</tr>
<tr>
<td>Boushey et al.</td>
<td>2008</td>
<td>58</td>
<td>0</td>
<td>9</td>
<td>6 (mean)</td>
</tr>
</tbody>
</table>

with lower recurrence rate as a result of the theoretically decreased tension and muscular fiber disruption of the crural pillars. Antoniou et al. recently published a review article of mesh-reinforced hiatal hernia repair. Inclusion criteria were 20 patients or more in the series, 6 months or more of follow-up, description of prosthetic material, its application, and additional anti-reflux surgery. From 1990 to 2010, 23 studies (1446 patients) were included, 11 of which were prospective, including 2 randomized control trials; 8 were retrospective, whereas the study design was not specified in the remaining 4 studies. Polypropylene (PP) was the most commonly used mesh material, utilized by 52% of authors, followed by polytetrafluoroethylene (PTFE) or expanded PTFE (26%), collagen or titanium coated PP (9%), collagen coated polyethylene (4%), and polyglactin910 (Vicryl; 4%). Mesh shape and size varied significantly among different studies. The vast majority of authors placed the mesh posterior to the esophagus, and 22% of them performed a “tension-free” hiatoplasty. Half of the authors preferred to excise the hernia sac in order to achieve adequate mediastinal visualization, while fundoplication was the most commonly used procedure following hiatal hernia repair (91%). Recurrence rate ranged from 0% to 38.5%, whereas the incidence of postoperative dysphagia, ranged from 0% to 34.3% among the studies. Polypropylene meshes seem to be associated with low recurrence rate (0%–22.7%, median 1.9%) and acceptable dysphagia rate (0%–21.4%, median 3.9%). Higher dysphagia rates after polytetrafluoroethylene (PTFE) or expanded PTFE (ePTFE) mesh have been recorded (15.5%–34.3%). Some authors still advocate suture closure of the hiatal gap in all cases, whereas biologic implant engineering represents a promising field in hiatal hernia surgery.
Table 2 Composition of the mesh-advantages and disadvantages

<table>
<thead>
<tr>
<th>Material</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylene</td>
<td>(1) Well and rapidly incorporated (2) Does not induce foreign-body reaction (3) Macroporous structure allows infiltration of granulocytes avoiding infection (4) Allows to visualize the underlying muscle when placing the sutures (5) Porous structure allows omission of sac excision, obviating the fear of causing a mediastinal retention cyst (6) Inexpensive (7) Easier to fix</td>
<td>(1) Maintains a rigid form (2) Tendency to form adhesions</td>
</tr>
<tr>
<td>Polytetrafluoroethylene</td>
<td>(1) Causes fewer adhesions (2) Allows tissue ingrowth without stimulating an extensive inflammatory response (3) Soft texture and pliability</td>
<td>(1) Expensive (2) Regular stapling with a hernia stapler is less useful (3) Opaque (4) Deformity on stapling due to thickness</td>
</tr>
<tr>
<td>Polyvinyl</td>
<td>(1) Inert to tissue reaction (2) Resilient, pliable (3) No tendency to excite fluid collections or abscess formation (4) Maintains flexibility</td>
<td>(1) Become fibrosed, contracted, and calcified</td>
</tr>
<tr>
<td>Teflon</td>
<td>(1) Maintain or increases strength (2) Easy to handle (3) Noninfective</td>
<td></td>
</tr>
<tr>
<td>Bovine pericardium</td>
<td></td>
<td>(1) Expensive (2) Opaque (3) Deformity on stapling due to thickness</td>
</tr>
<tr>
<td>Porcine small intestine submucosa</td>
<td>(1) Pliable (2) Not synthetic (3) Resorbable (4) Easy to use</td>
<td></td>
</tr>
<tr>
<td>Acellular dermal matrix</td>
<td>(1) Easy to handle and pliable (2) Rapid incorporation</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Methods of mesh placement.
Antireflux procedure

Although limited data confirm the need for fundoplication, most surgeons perform an antireflux procedure when repairing a PHH because the fundoplication helps to anchor the stomach in the abdomen and because of the need to create a barrier to reflux. The extensive dissection necessary for full mobilization of the hernia sac and esophagus destroys anti-reflux mechanism and resulting in postoperative reflux. Incidence of postoperative reflux as high as 65% in patients who did not receive a fundoplication has been reported. Some authors believe that avoiding a fundoplication decreases the risk of postoperative dysphagia and operative complications and shortens the operative time for patients who are often elderly with significant medical comorbidities. These authors suggest that fundoplication should be performed selectively in patients diagnosed with GERD on preoperative evaluation.

Gastropexy/Gastrostomy

In many cases, reherniation occurs because of positive intra-abdominal pressure and negative intrathoracic pressure creating a cephalad force, rendering the stomach to migrate into the thorax. By anchoring the stomach below the diaphragm by gastropexy or gastrostomy, this migration may be avoided. The technique is simple, however, a high rate of recurrence have been reported with this technique. No prospective randomized study has proved that either of these two techniques reduces the rate of recurrence.

Summary

The repair of paraesophageal hernia is technically challenging and controversial. The approach to repair shifted from the thoracic to the open abdominal to the laparoscopic approach and the latter appear to be the current standard. High recurrence rates have been reported with laparoscopic repair, but these were found to be anatomic recurrence with much lower symptomatic rates. Symptomatic recurrence in the laparoscopic era appears similar to that seen with open procedures, but without the additional morbidity conferred by laparoscopy. In the last decade, several authors have improved the rate of recurrence using prosthetic meshes that have decreases even radiologic recurrence to fewer than 5%. However, this has come at the price of rare but serious complications such as erosion and fibrosis. Mesh repair appears to be associated with a higher perioperative rate of dysphagia. Biologic mesh has been implemented in an attempt to obtain the buttressing effect of prosthetic meshes without the complication of erosion or infection. Although scientific proof is lacking, fundoplication is the most common procedure to be added after crural repair.

References

http://www.ctsnet.org/portals/thoracic/HerniaRepair

See page 304 for references.