Introduction

Achieving complete resection is the key to the treatment of thymoma.1) Masaoka stage I and II thymomas are generally managed with surgery and it is possible to perform complete resection. However, in cases of locally advanced thymoma (Masaoka stage III), complete resection requires extensive surgical resection, which has occasionally been difficult. It has been thought that the administration of preoperative radiation therapy (RT) might improve the rate of complete resection in patients with stage III thymomas.2) Yet, preoperative proton beam therapy (PBT) for thymoma has never been reported. Here, we describe a case of locally advanced thymoma that was completely resected after PBT.

Case Report

A 31-year-old woman was admitted to our hospital with an anterior mediastinal tumor. She initially presented with chest pain, and chest computed tomography revealed a mass sized 17.0 cm × 10.4 cm × 9.7 cm (estimated volume: 768 cm³) at the left anterior mediastinum (Fig. 1). Computed tomography-guided needle biopsy yielded a pathological diagnosis of type B3 thymoma. The large mass invaded the left upper lobe and mediastinal fat tissue, and had broad contact with the main pulmonary artery to the left pulmonary artery and chest wall (Fig. 1). The final clinical diagnosis was Masaoka stage III thymoma. Complete resection might not have been achieved by pneumonectomy and extensive resections of the neighboring organs. Furthermore, considering the patient’s age and

Keywords: proton beam therapy, thymoma, preoperative, locally advanced thymoma
the future possibility of pregnancy, it was preferred that pneumonectomy and chemotherapy be avoided. Definitive photon (X-ray) RT (XRT) of 60 Gy using 3-dimensional conformal RT would have been difficult to administer because of the potential for complications to the lung (V20: over 35%) and heart (mean dose: 45 Gy). We therefore selected definitive PBT, because it could be administered within dose limitations. Considering a plan for possible surgery at a later point, a PBT plan was initially developed to deliver 40 Gy (RBE) (Relative Biological Effectiveness (RBE) = 1.1) to the planned target volume in 20 fractions. Figure 2A shows the colorwash isodose distributions for XRT and PBT. Figure 2B shows the dose-volume histograms for the left lung. Compared with XRT, PBT reduced the mean dose to the left lung by 8 Gy. In practice, it took 29 days to complete the planned PBT regimen. After 40 Gy (RBE) PBT, the large tumor decreased in size to 11.5 cm × 8.8 cm × 6.7 cm (estimated volume: 268 cm³) (Fig. 3). We judged that complete resection was possible without pneumonectomy, and the treatment strategy was changed from definitive PBT to surgery. We performed thymectomy and extensive resection of the left upper lobe of the lung, phrenic nerve, and pericardium, which were removed completely via median sternotomy on the 42nd day after the start of PBT. PBT did not result in any technical difficulties during surgery. Pathology revealed a stage II, type A thymoma with microscopic negative margins. As of 24 months after surgery, the patient has not developed any severe adverse events of PBT.

Discussion

Regarding PBT for thymoma, only one report has described postoperative therapy.3 To the best of our knowledge, the current report provides the first description of preoperative PBT for thymoma. Previously, Onuki et al. reported that preoperative RT effectively reduced tumor size, thus facilitating complete resection of stage...
In this case, histological change was observed after preoperative PBT. Onuki et al. reported this phenomenon as radiation-induced histological change, which was prominent in type B1 and type B2 thymomas. This change seems to result from the different radioresponses of the tumor epithelial cells and lymphocytes. However, it is also possible for small biopsy specimens to be inconsistent with the surgical specimen because of tumor heterogeneity.

One disadvantage of PBT is that it is more affected by respiratory motion and heartbeat in comparison with XRT. Because there have been few reports of PBT for thymoma, its effectiveness remains generally unknown. We need to accumulate more data on PBT for thymoma to validate its benefits.

Conclusion

Our experience suggests that preoperative PBT may be an effective modality for reducing tumor size, facilitating complete resection, and preventing RT toxicity. PBT should be considered in similar cases with huge thymoma, in whom there are concerns regarding the toxicity associated with RT.

Disclosure Statement

There are no conflicts of interest to declare.

References