Introduction

Complete circumferential dissection of the ascending aorta is a rare event. Rosenzweig\(^1\) reported that it occurred in 2% of ascending aortic dissections. We report two cases of Stanford type A acute aortic dissection (AAD) whose intimal flaps intussuscepted into the left ventricular outflow tract.

Case Report

Case 1: A 41-year-old man with AAD in whom transthoracic echocardiography (TTE) showed the dissected flap as folded back into the left ventricular outflow tract, causing severe aortic regurgitation (AR) with rapidly progressing acute pulmonary edema. Despite performing salvage surgery, the patient could not be rescued.

Case 2: An 81-year-old man with annuloaortic ectasia developed Stanford type A AAD. TTE showed an extremely mobile intimal flap intussuscepting into the left ventricular outflow tract. However, AR was not severe as it was prevented by the flap itself. The patient was rescued by performance of the modified Bentall procedure.

Keywords: thoracic aorta, aortic dissection, aortic regurgitation
Yanase Y, et al.

Cardiac massage and surgical repair was performed. Transesophageal echocardiography (TEE) showed severe AR due to intussusception of the ascending aortic intimal flap (Figs. 1c and 1d). Under moderate hypothermia and circulatory arrest, the ascending aorta was incised and the entire circumference of the ascending aorta was dissected near the sinotubular junction. The aortic valve was left intact. Although ascending aortic replacement was performed, the patient could not be weaned off CPB because of acute pulmonary edema and myocardial damage due to acute AR. The patient returned to the intensive care unit (ICU) with percutaneous cardiopulmonary support, where he died. The pathology of the dissected aortic wall suggested cystic medial necrosis.

Case 2: An 81-year-old man was transported to the emergency room with dizziness and reeling after playing park golf. TTE demonstrated a mobile flap in the ascending aorta. Since the eCT revealed Stanford type A AAD, the patient was transferred to our hospital for surgical treatment. Physical examination revealed a blood pressure of 80/40 mmHg and heart rate of 50 beats/min. ECG showed sinus rhythm with no significant ST-T segment shift. eCT showed (Figs. 2a and 2b) a “missing flap” in the ascending aorta and dilatation of the aortic root (diameter: 64 mm). Intraoperative TEE during emergency surgery showed an extremely mobile dissected flap which moved in and out of the aortic valve in synchronicity with the cardiac cycle although it did not result in severe AR (Figs. 2c and 2d). Intraoperative findings indicated that the intima of the ascending aorta was completely torn off proximal to the innominate artery. The intimal flap was intussuscepted at the aortic valve. Hence, the modified Bentall procedure was performed. He was transferred to another hospital for rehabilitation on the postoperative day 38. The pathology of the dissected aortic wall did not appear to be cystic medial necrosis.

Discussion

Complete circumferential dissection with Stanford type A AAD, which is rare, can reportedly cause several complications due to intussusception of the mobile dissected flap. If the flap folds over distally, it causes syncope; if folded over proximally, it can cause occlusion of the coronary artery or AR. In our case 1, the flap was folded over into the left ventricular outflow tract in
An Aortic Dissection with Intimal Intussusception

diastole, preventing closure of the aortic valve, resulting in severe AR and rapid development of acute pulmonary edema. Although salvage surgical repair was performed, the patient could not be weaned off CPB and died soon thereafter. In our case 2, the dissected flap was extensive and extremely mobile, and intussuscepted into the left ventricular outflow tract during diastole. Although the flap interfered with closure of the aortic valve, the excess tissue of the flap itself reduced the regurgitant volume through the aortic valve. The difference between case 1 and case 2 was the position at which the dissected flap was disconnected. In case 1, the circumferential dissected flap was disconnected just above the sinotubular junction. The short-dissected flap was therefore folded back into the left ventricular outflow tract, preventing the aortic valve from closing. In case 2, the dissected flap was disconnected near the proximal portion of the innominate artery. Almost all the ascending aorta was circumferentially dissected, and a large amount of the flap tissue was intussuscepted into the left ventricular outflow tract during diastole. Therefore, we consider that the difference between the AR grade of case 1 and that of case 2 caused the difference in the position of flap disconnection. As a result, although intussusception of the dissected flap occurred in both cases, the degrees of intussusception were different, resulting in different symptoms and, ultimately, different pathophysiological outcomes.

As stated above, AAD with a mobile flap is associated with a high probability of causing severe complications. Hence, it requires urgent diagnosis and treatment. Usually, Stanford type A AAD cases show a false lumen and dissected flap at the ascending aorta on eCT. However, in cases with circumferential dissection, the eCT image indicates disappearance of the flap because the flap is folded over proximally or distally, with only the adventitia remaining in the dissected part of the aorta. This imaging finding which is called “missing flap” sometimes leads to misdiagnosis. The phenomenon of the “missing flap” has been reported in detail by Sanders et al. In our patients, although eCT images showed seemed to indicate absence of a flap (missing flap) in the ascending aorta, the dissected flap was visible in the aortic arch and TTE showed the dissected flap in the

![Fig. 2](Image) Imaging evaluation in case 2. (a) and (b) show eCT images. Dissection was not seen in the ascending aorta (a) (“missing flap”) although an intimal flap was apparent in the aortic root (b). The aortic root was dilated. (c) and (d) show transesophageal echocardiography images. The dissected intimal flap exhibited dynamic mobility. It was intussuscepted into the left ventricular outflow tract during diastole (c) and returned to the ascending aorta during systole (d). eCT: enhanced computed tomography.
Yanase Y, et al.

Aortic root. Hence, we could easily diagnose Stanford type A AAD. TTE can easily demonstrate the mobile dissected flap in the ascending aorta. Hence, screening TTE is very important for the diagnosis of AAD.

Conclusion

Stanford type A AAD with complete circumferential dissection is a serious disease since it can cause severe complications secondary to intimal intussusception. Screening TTE is useful for the diagnosis of a mobile flap in the ascending aorta.

Disclosure Statement

None of the authors has any conflicts of interest to declare.

References

