40Hz ERPの検討（第二報）

○渋津志雄、小林俊光（東北通信）、塚富美子（宮城県病院会ヒヤリングセンター）

音刺激による40 Hz ERP（event related potential）は、聴覚の影響を受けること、500 Hzの 
tone burst刺激による反応値は成人では10 dB（SL）であるが小児では30～40 dB（nHL）
であること。成人においては比較的安定して出現するが、小児においてはそれ程安定した
反応が得られないことなどを前回の本学会において発表した。今回は、本反応を小児の他
覚的聴力検査として用いるための最適な記録条件を追求することを目的として、加算波形
の周波数構成について検討を行った。さらに成人と小児の反応の出現性的差の原因につい
ても言及した。

（方法）

対象は聴力正常の3才～6才の小児6名で、0.5 KHzのtone burst（立ち上がり、立ち
下がり時間各々2 msec、接続時間4 msec）刺激による反応を記録した。刺激間隔は25 m
secで、気導受話器を通して被検者の耳に与えた。誘導された反応をデータレコーダに録
音すると同時にシグナルプロセッサ（7 TO 8、三栄）に導き、加算処理した。加算回数は700
回、解析時間は102.3 msecである。反応の記録は覚醒時に開始して睡眠中にまでわたって行
った。尚、催眠剤などは使用していなかった。周波数分析は、加算波形のパワースペクトルを
求め、逆フーリエ変換によりデジタルフィルタを通じた波形を作成して行った。なお、増
幅器のフィルタはlow cut 8Hz（6dB／oct）、high cut 120Hz（18dB／oct）である。

（結果）

1）図1は、覚醒時～睡眠中に連続的に記録した反応波形である。覚醒時には各ピークは
認められるがnoise成分の混入が多く判定しにくい波形であるが、睡眠すると共に、noise
の混入は減少して来る。しかし反応の振巾の縮小と基線の動揺が大きくなる場合がある。
2）図2は容易に反応陽性と判定できた反応波形のパワースペクトルである。全体の傾向
としては40 Hz（図では39 Hz）附近に1つのピークを成しており、最大のパワーが40 Hz附近
に存在するものも認められるが、10 Hz（図では9 Hz）附近に最大のパワーが存在する場合
もある。10 Hz附近に最大のパワーを有するような波形は40 Hz附近に最大のパワーを有す
る波形と比較すると、基線の動揺など歪みが大きい（図3）。以上は各症状と共に通して認
められた現象であった。

3）図4はデジタルフィルタを通じた波形であるが、29Hz high passにして低域周波数成分
を除去すると反応の各成分が著明になり、48 Hz high passで消失した。

（まとめ）

睡眠によって反応の振巾が縮小し、時に低域周波数成分の増大により波形は歪むが、
noise成分の混入が減少する為に波形自体は見易くなることから小児では睡眠中に検査をす
るのが良いと考えられる。その際に低域基線成分の混入をささげる為に20 Hz以下を除去し
た方が良い。睡眠小児において反応の出現性が悪いのは、反応成分（40 Hz）のパワーと20
Hz以下の成分のパワーとの差が殆どないことや後者がむしろ大きい場合があること
などに起因すると推察された。成人の場合（図5）にはこの差が大きいことが反応を明瞭
にしており小児との差異を生する原因であろうと考えられた。以上から小児の睡眠時の反

Audiology Japan Vol. 27, No. 5, 1984
応記録条件として重要なポイントは30～50Hzの成分を有効に抽出することにあると結論した。

図1 反応波形の変化（覚醒→睡眠）

図2 パワースペクトル（小児例）

図3 波形の歪み

図4 デジタルフィルタによる波形の変化（high pass）

図5 パワースペクトル（成人例）